
University of Patras - School of Engineering

Department of Computer Engineering

and Informatics

Independent Sets and Graph Coloring with
Applications to the Frequency Allocation

Problem in Wireless Networks

PhD Thesis

Evi Papaioannou

Advisor: Christos Kaklamanis, Professor

Patras, November 2004

Independent Sets and Graph Coloring with
Applications to the Frequency Allocation

Problem in Wireless Networks

PhD Thesis

Evi Papaioannou

Examination Committe:

Christos Kaklamanis, Professor (Advisor)
Lefteris Kirousis, Professor
Paul Spirakis, Professor
Athanasios Tsakalidis, Professor
Stavros Cosmadakis, Professor
Christos Zaroliagis, Associate Professor
Sotiris Nikoletseas, Assistant Professor

i

ii

Independent Sets and Graph Coloring with
Applications to the Frequency Allocation

Problem in Wireless Networks

Evi Papaioannou

Abstract

The subject of this dissertation thesis is the study of issues arising in com-
munication networks that utilize Frequency Division Multiplexing (FDM).
We consider networks based on telecommunication infrastructure such as
cellular mobile telephone networks and networks of autonomous transmit-
ters, like ad hoc wireless networks. We represent these networks using graphs
and model the corresponding communication problems as combinatorial op-
timization problems in such graphs. Our results include new on-line algo-
rithms which outperform previously known algorithms as well as new lower
bounds.

In cellular networks, a geographical region is virtually divided into sub-
regions called cells. Each cell is the calling area of a base station which
enables wireless communication. Each base station is responsible for ser-
vicing users located within its range. Communication between two users of
a cellular network involves in the first place communication between each
user and the base station that services the cell where the user is located.
Then, communication between the base stations must be established. Wire-
less communication between users and their base station is always involved,
even when both of the users are located in the same cell or only one of them
uses the cellular network and the other uses, for example, the standard tele-
phone network. Two users located close to each other can simultaneously
communicate with their base station via Frequency Division Multiplexing
technology, using different frequencies. Usually, the use of the same fre-
quency by users located in the same or adjacent cells causes signal inter-
ference, thus, making communication hard or impossible to establish. The
basic cellular network model assumes base stations equipped with equivalent
transmitters, uniformly distributed on the plane. Therefore, the plane is di-
vided in cells of hexagon shape. In fact, cells can have irregular shape and it
may be the case that the signal interference constraints regarding the reuse
of frequencies by different users are even harder and more complicated. We

iii

model such constraints through interference graphs where nodes correspond
to cells of the network and an edge between two nodes u and v states that
the assignment of the same frequency to users located in cells corresponding
to the nodes u and v would cause signal interference. In cellular networks,
an important communication problem to be solved is the assignment of fre-
quencies to the users so that they can communicate with their base station
without signal interference. Since the available frequency spectrum is lim-
ited, its efficient utilization is critical and essential. Frequency allocation
and call control are the most fundamental problems to be solved for the
efficient use of the frequency spectrum and can be defined as follows:

• The frequency allocation problem is to assign frequencies to the users
so that signal interference is avoided, while minimizing the total num-
ber of frequencies used.

• The call control problem in a network that supports a spectrum of
w available frequencies is to assign frequencies to users so that signal
interference is avoided, while maximizing the number of users served.

We consider the on-line version of both the frequency allocation and the
call control problems. We follow the competitive analysis approach and we
use the competitive ratio as a measure for evaluating the performance of
an algorithm. Calls are not known a priori and appear gradually. When
a new call appears, an on-line frequency allocation algorithm must assign
it a frequency so that signal interference with calls previously appeared is
avoided. An on-line call control algorithm must either reject (not assign a
frequency) or accept the call by assigning it one of the w available frequen-
cies so that signal interference is avoided. In both cases, the decisions of the
algorithm cannot change in the future. The competitive ratio of an on-line
frequency allocation algorithm indicates the relation between the number
of frequencies used by the algorithm and the number of frequencies used
in an optimal assignment. The competitive ratio of an on-line call control
algorithm indicates the relation between the number of calls accepted by
the algorithm and the maximum number of calls that could have been ac-
cepted. For the frequency allocation problem, we present an almost tight
analysis of the greedy algorithm. For the call control problem, we present
a series of randomized on-line algorithms with competitive ratios that de-
terministic algorithms cannot achieve. Our algorithms are simple in the
sense that they use a small number of random bits or weak random sources
for making their random choices. Our results can be extended to cellular
networks with various interference graphs, like cellular networks with high

iv

reuse distance, irregular networks with interference graphs of small degree,
as well as networks with arbitrary interference graphs. We also present new
corresponding lower bounds for randomized on-line call control algorithms.

The frequency allocation and the call control problems are also essen-
tial in the case of networks of autonomous transmitters. In such networks,
transmitters are distributed in the plane, each of them covers a circular re-
gion whose range depends on the technical specification of the transmitter
(e.g. its transmission power) and can operate at a different frequency. We
assume that transmission without signal interference requires that the range
of each transmitter does not overlap with the range of other transmitters
operating at the same frequency. Possible signal interference between trans-
mitters operating at the same frequency is modelled by disk graphs, where
each node corresponds to a circular region on the plane so that two such
regions overlap or are adjacent if and only if there exists an edge connecting
the corresponding nodes in the graph. If we consider frequencies as colors,
the frequency allocation problem in networks of transmitters is equivalent
to the minimum coloring problem in the disk graph modelling possible sig-
nal interference. The important special case of the call control problem
where each transmitter operates at a particular frequency is equivalent to
the maximum independent set problem in the corresponding disk graph.

We study the on-line version of both the maximum independent set
and the minimum coloring problems in disk graphs. Again, we follow the
competitive analysis approach and use the competitive ratio as a measure for
the evaluation of the performance of our algorithms. The nodes of the graph
are not known in advance and appear gradually. When a new node appears,
an on-line coloring algorithm must assign it a color different from those
assigned to previously appeared adjacent nodes. An on-line independent set
algorithm starts from an empty set of nodes and gradually expands it. When
a new node appears, the algorithm must decide whether to include this node
in the set. In both cases, the on-line algorithm cannot change its decisions in
the future. The competitive ratio of an on-line coloring algorithm indicates
the relation between the number of colors used by the algorithm and the
number of colors in an optimal coloring. The competitive ratio of an on-
line independent set algorithm indicates the relation between the size of the
independent set computed by the algorithm and the size of the maximum
independent set.

For the independent set problem in disk graphs, we present the first
new randomized on-line algorithms. We prove upper and lower bounds for
their competitive ratios either if the disk representation is given as part of
the input or if only the nodes and edges of the disk graph constitute the

v

input. Obviously, the latter case is harder. When the disk representation
is given as part of the input, we present on-line algorithms with signifi-
cantly better competitive ratios than the known results in the literature
obtained by deterministic on-line algorithms. Note that, the competitive
ratios achieved by our algorithms outperform those obtained by determin-
istic on-line algorithms. Furthermore, our algorithms can extend also to
more general cases that model the call control problem in networks of trans-
mitters obtaining similar competitive ratios. When the disk representation
is not given as part of the input, we prove lower bounds indicating that a
particularly simple, intuitive, deterministic on-line algorithm can achieve a
competitive ratio which is asymptotically optimal. This particular result
implies that the use of randomization cannot help in improving the com-
petitiveness of on-line independent set algorithms. For the coloring problem
in disk graphs, we present a new on-line algorithm that does not make use
of the disk representation and achieves a competitive ratio similar to the
one obtained by the best-known algorithm in the literature that uses the
disk representation. This particular result significantly improves the best
previously known upper bound for on-line coloring algorithms that do not
use the disk representation.

vi

Contents

1 Introduction 1

1.1 Frequency allocation and call control on wireless networks . . 3

1.2 Independent sets and graph coloring 5

1.3 Performance evaluation of on–line algorithms 6

1.4 Contribution of this PhD Thesis 7

2 Frequency Allocation in Cellular Networks 11

2.1 The greedy frequency allocation algorithm 13

2.2 Analysis of the greedy algorithm 13

2.3 A lower bound for the competitiveness of the greedy algorithm 20

3 Call Control in Wireless Networks 23

3.1 Description of known algorithms 26

3.2 Algorithm p–Random . 29

3.3 Analysis of algorithm p-Random in sparse networks 38

3.3.1 Analysis of algorithm p-Random in networks of max-
imum degree 3 . 40

3.3.2 Analysis of algorithm p-Random in networks of max-
imum degree 4 . 44

3.4 Analysis of algorithm p-Random in arbitrary networks . . . 45

3.5 A simple 8/3-competitive algorithm 47

3.6 ““Classify and Randomly select””-based Algorithms 49

3.7 Networks of reuse distance k > 2 52

3.8 Lower Bounds . 53

4 Disk Graphs 65

4.1 Introduction . 65

4.2 Independent sets in σ-bounded disk graphs 69

4.2.1 Upper Bounds . 69

vii

4.2.2 Lower bounds . 77
4.3 Independent sets in unit disk graphs 85
4.4 An upper bound for on-line coloring 90

5 Conclusions - Future Research 93

viii

Chapter 1

Introduction

In the area of mobile communications, which combines wireless and high
speed networking technologies, rapid technological progress has been made
during the recent years through the development and use of flexible wireless
and mobile networks (e.g., mobile telephone networks, bluetooth, wireless
ad hoc networks), sensor networks, wireless broadband networks, etc. It is
expected that in the near future, mobile users have access to a wide variety
of services available over mobile communication networks. Nevertheless,
there is still a lack in innovative methods and techniques that will allow
exploitation of the new transmission media and guarantee efficient access to
them. The use of the new communication media is based on techniques that
have been successfully used in the past, but prove to be practically inefficient
and insufficient nowadays. Therefore, the development of new protocols and
algorithms that will allow for efficient use of the new communication media
exploiting their special features is more than necessary.

The frequency allocation problem has many applications in the area of
radio communication networks as well as of mobile cellular networks. It con-
cerns the assignment of frequencies to transmitters so that signal interference
(which appears when transmitters located in the same or neighboring geo-
graphical areas operate at the same or neighboring frequencies) is avoided or
minimized. Due to the continuously increasing communication needs which
tend to exceed the corresponding expansion of the available spectrum, the
necessity for efficient management of this spectrum imposes the use of op-
timal or near optimal frequency allocation strategies. When a particular
frequency is used in some cell of the network it cannot be used by another
call in the same or adjacent cells, since in this case signal interference would
be caused. On the other hand, each frequency can be used to service calls

1

in geographically distant cells on the network (frequency reuse). In wireless
communication networks transmitters have usually overlapping ranges. If
we assume that a receiver uses a particular frequency, it is known that in
the presence of signal interference due to other transmitters, the received
signal is degraded. Interference can be caused by transmitters that either
use the same frequency and are located in the same region, or use “neigh-
boring ” frequencies, since neither transmitters nor receivers operate exactly
at a predefined frequency. The problem in this class of networks is , given
a set of transmitters, to define the frequency at which each of them should
operate, so that the signal interference, the maximum number of frequen-
cies allocated and the number of different frequencies used are minimized.
Efficient frequency allocation techniques in wireless networks must guaran-
tee that signal interference is avoided and frequency reuse is maximized, so
that the maximum number of frequencies is available in each cell and at the
same time the number of the calls that the network can service is maxi-
mized. Such algorithms and techniques are categorized based on how they
are executed and also on the way frequencies are divided in the network.
In the case of fixed allocation algorithms, there is an initial assignment of
frequencies to the cells so that their requirements are met (e.g. more fre-
quencies are assigned to a cell covering a densely populated area) and the
maximum possible reuse of frequencies is ensured. Fixed allocation algo-
rithms are usually simple but not easily adaptive to workload (call) changes
in the network. Borrowing techniques have been proposed for efficiently
dealing with this problem (when there are increased requirements in an area
with few available frequencies). Dynamic frequency allocation algorithms
can more efficiently manage changes in the workload but have increased
complexity and requirements in computational power. Another technique
for designing and analyzing dynamic frequency allocation algorithms is the
competitve analysis of on-line algorithms (algorithms that decide which re-
quests to service without having knowledge of the requests that will appear
in the future; this is what actually happens in real cellular networks). Ac-
cording to competitive analysis, the performance (in terms of the number of
requests finally serviced) of an on-line algorithm for a sequence of calls not
known a priori is compared to the performance of the optimal algorithm on
the same sequence.

2

1.1 Frequency allocation and call control on wire-

less networks

We consider wireless networks in which base stations are used to build
the required infrastructure. In such systems, the architectural approach used
is the following. A geographical area in which communication takes place is
divided into regions. Each region is the calling area of a base station. Base
stations are connected via a high speed network.When a user A wishes to
communicate with some other user B, a path must be established between
the base stations of the regions in which the users A and B are located.
Then communication is performed in three steps: (a) wireless communica-
tion between A and its base station, (b) communication between the base
stations, and (c) wireless communication between B and its base station.
Thus, the transmission of a message from A to B first takes place between
A and its base station, the base station of A sends the message to the base
station of B which will transmit it to B. At least one base station is involved
in the communication even if both users are located in the same region or
only one of the two users is part of the wireless network (and the other uses
for example the PSTN).

Many users of the same region can communicate simultaneously with
their base station. This can be achieved via frequency division multiplexing
(FDM). The base station is responsible for allocating distinct frequencies
from the available spectrum to users so that signal interference is avoided.
Since the spectrum of available frequencies is limited, important engineering
problems related to the efficient reuse of frequencies arise.

Signal interference in cellular networks can be represented by an interfer-
ence graph G. Vertices of the graph correspond to cells and an edge (u, v) in
the graph indicates that the assignment of the same frequency to two users
lying at the cells corresponding to nodes u and v will cause signal interfer-
ence. If the assumption of uniform distribution of identical base stations
does not hold, arbitrary interference graphs can be used to model the un-
derlying network. Such a network as well as the corresponding interference
graph are depicted in Figure 1.1.

In the ideal case, base stations with equivalent transmitters are uniformly
distributed within the network and the calling area of each base station is a
circle which, for simplicity reasons, can be represented as a regular hexagon.
Such networks are called ideal wireless cellular networks. An ideal wireless
cellular network (and the corresponding interference graph) is depicted in
the left part of Figure 1.2.

3

Figure 1.1: A wireless cellular network and the corresponding interference
graph.

Signal interference usually manifests itself when the same frequency is
assigned to users located in the same or adjacent cells. Alternatively, in
this case, we may say that the cellular network has reuse distance 2. By
generalizing this parameter, we obtain cellular networks of reuse distance k
in which signal interference between users that have been assigned the same
frequency is avoided only if the users are located in cells with distance at
least k. The interference graph of a cellular network of reuse distance 2 is
depicted in the right part of Figure 1.2.

x-axis

z-axis

y-
a
xi

s

Figure 1.2: A cellular network and the corresponding interference graph
when the reuse distance is 2.

We define as degree of a cell v the number of its neighboring cells. The
network degree is the maximum degree over all cells of the network. Equiv-
alently, the network degree is the maximum degree of the corresponding
interference graph.

In wireless networks, given users that wish to communicate, two prob-
lems are of main interest and are addressed in this PhD Thesis:

4

• The frequency allocation problem is to assign frequencies to the users
so that signal interference is avoided, minimizing the total number of
frequencies used.

• The call control (or call admission) problem in a network that supports
a spectrum of w available frequencies is to assign frequencies to users
so that signal interference is avoided, maximizing the number of users
served.

We assume that calls corresponding to users that wish to communicate
appear in the cells of the network in an on–line manner. When a call ar-
rives, an on–line frequency allocation algorithm accepts the call assigning a
frequency to it, while a call–control algorithm decides either to accept the
call (assigning a frequency to it), or to reject it. In both cases the objec-
tive is maximizing the benefit, i,e., using the fewer possible frequencies and
servicing as many users as possible, respectively, while at the same time
avoiding signal interference. Once a call is accepted, it cannot be rejected
(preempted). Furthermore, the frequency assigned to the call cannot be
changed in the future. We assume that all calls have infinite duration; this
assumption is equivalent to considering calls of the same duration.

1.2 Independent sets and graph coloring

The frequency allocation problem in wireless networks is equivalent to
the problem of multicoloring the nodes of a graph. In particular, given the
interference graph of a wireless cellular network, if we imagine frequencies
as colors, then allocating frequencies to users of the network is equivalent
to multicoloring the nodes of the interference graph. The coloring must
use the minimum number of colors (i,e., the communication between users
must be obtained with the use of the minimum number of frequencies) and
nodes of the interference graph connected with an edge must be assigned
different colors (i,e., users located ““close”” to each other according to the
reuse distance of the network, must be assigned different frequencies).

The call control problem in wireless networks is a generalization of the
maximum independent set problem in graphs. Also in this case, given the
interference graph of a cellular wireless network and a limited spectrum of
w available frequencies, considering frequencies as colors, what we have to
achieve is to color as many nodes of the graph as we (i,e., to service as many
users as we can) using the w available colors (i,e., using the w available

5

frequencies). When only one frequency is available (w = 1) the call control
problem is equivalent to the maximum independent set problem.

So, as far as the frequency allocation problem in wireless (cellular) net-
works is concerned, what we actually trying to achieve is to optimally solve
the corresponding minimum coloring problem in the underlying interference
graph of the network. On the other hand, in the case of the call control
problem on wireless (cellular) networks, we are trying to achieve optimal
solutions to the maximum independent set problem in the underlying inter-
ference graph of the network. We study the on-line versions of the maximum
independent set and the coloring problems. This implies that the graph is
not known in advance but its nones appear gradually, and every time a new
node appears, our algorithm must make decide, without any knowledge of
which will be the next node presented, whether to assign the node one of the
colors already used or to use a new additional color, or whether to include
the node in the current independent set, or to construct a new one.

1.3 Performance evaluation of on–line algorithms

Competitive analysis [54] has been used for evaluating the performance
of on–line algorithms for various problems. In our setting, given a sequence
of calls, the performance of an on–line algorithm A is compared to the
performance of the optimal algorithm OPT .

For frequency allocation algorithms, let CA(σ) be the cost of the on–
line algorithm A on the sequence of calls σ, i.e. the number of frequencies
used by A, and COPT (σ) the cost of the optimal algorithm OPT . If A is a
deterministic algorithm, we define its competitive ratio ρ as

ρ = max
σ

CA(σ)

COPT (σ)
,

where the maximum is taken over all possible sequences of calls. If A is a
randomized algorithm, we define its competitive ratio ρ as

ρ = max
σ

E [CA(σ)]

COPT (σ)
,

where E [CA(σ)] is the expectation of the number of frequencies used by A,
and the maximum is taken over all possible sequences of calls.

For call control algorithms, let BA(σ) be the benefit of the on–line algo-
rithm A on the sequence of calls σ, i.e. the number of calls of σ accepted

6

by A, and BOPT (σ) the benefit of the optimal algorithm OPT . If A is a
deterministic algorithm, we define its competitive ratio ρ as

ρ = max
σ

BOPT (σ)

BA(σ)
,

where the maximum is taken over all possible sequences of calls. If A is a
randomized algorithm, we define its competitive ratio ρ as

ρ = max
σ

BOPT (σ)

E [BA(σ)]
,

where E [BA(σ)] is the expectation of the number of calls accepted by A, and
the maximum is taken over all possible sequences of calls.

Usually, we compare the performance of deterministic algorithms against
off–line adversaries, i.e. adversaries that have knowledge of the behaviour
of the deterministic algorithm in advance. In the case of randomized algo-
rithms, we consider oblivious adversaries whose knowledge is limited to the
probability distribution of the random choices of the randomized algorithm.

1.4 Contribution of this PhD Thesis

In this PhD Thesis, we study the on-line version of the frequency allo-
cation and the call control problem using competitive analysis. We present
new algorithms and lower bounds for wireless networks with cellular, planar
and arbitrary interference graphs.

For the frequency allocation problem in cellular networks of reuse dis-
tance 2, we improve the best known competitive ratio which had been proved
to be at least 3 and achieved by the Fixed Allocation algorithm. In par-
ticular, using competitive analysis for the greedy algorithm, we proved that
its competitive ratio is at least 2.429 and at most 2.5. These results are
presented in Chapter 2.

For the on-line version of the call control problem, we present algorithm
p-random, a randomized algorithm that uses randomness whenever a com-
munication request appears (i.e., proportional to the size of the network)
in wireless networks of reuse distance 2 that support one frequency. We
prove that it achieves a competitive ratio between 2, 469 and 2, 651 assum-
ing oblivious adversaries. In this way, we beat the lower bound of 3, which is
the smallest possible competitive ratio obtained by deterministic algorithms
in wireless cellular networks. Our analysis can be extended to cellular net-
works of constant or arbitrary degree. Furthermore, we significantly improve

7

this result presenting a series of simple randomized algorithms which obtain
competitive ratios less than 3, work for networks that support arbitrarily
many frequencies and, use only either a constant number of random bits or
a weak random source. The best upper bound on competitiveness we proved
is 7/3.

For cellular networks of reuse distance k > 2, we presented simple ran-
domized on-line call control algorithms with competitive ratios that signif-
icantly improve the lower bounds of deterministic algorithms and use only
O(log k) random bits or weak random sources. These algorithms achieve
competitive ratios significantly better than 4. Furthermore, using Yao’s
Minimax Principle, we proved new lower bounds of 25/12, 127/60, and 2, 5
on the competitiveness of on-line call control algorithms in cellular networks
of reuse distance k = 2, 3, 4, k = 5 and k ≥ 6, respectively and a new lower
bound of 2.086 for networks with planar interference graphs.

Our results for the call control problem are presented in Chapter 3. In
Chapter 4, we study the on-line versions of the two fundamental graph-
theoretic problems, the maximum independent set problem and the graph
coloring problem, for disk graphs, which are graphs resulting from the inter-
section of disks on the plane. For the maximum independent set problem,
we examine if the use of randomness can help in the improvement of the
competitive ratios of on-line algorithms. We assume that the sequences of
disks are constructed by oblivious adversaries, i.e., adversaries that do not
have knowledge of the random choices of the algorithm (but, they probably
know the probability distribution according to which the algorithm makes
its random choices). We prove that, in general, the use of randomness does
not help against oblivious adversaries even when the disk representation is
given as part of the input, i.e., we constructed sequences of disks for which
no (possibly randomized) on-line algorithm can have a competitive ratio
better than Ω(n). When the disk representation is not given as part of the
input, we prove a lower bound of Ω(min{n, σ2}) on the competitiveness of
on-line algorithms in σ-bounded disk graphs (i.e., graphs whose nodes cor-
respond to disks with radii between 1 and σ) with n vertices which implies
that algorithm First-Fit is optimal within a constant factor. For σ-bounded
disk graphs when the disk representation is given as part of the input, we
present randomized algorithms with competitive ratios almost logarithmic
in σ and prove that these algorithms are optimal. For unit disk graphs (i.e.,
graphs of disks of the same radius), we present a randomized algorithm
with competitive ratio equal to 4.41 (which is less than the lower bound of
5 on the competitiveness of deterministic algorithms). We also prove lower
bounds of 2.5 and 3 on the competitiveness of randomized algorithms for

8

unit disk graphs. For the coloring problem, we show how the best known
upper bound of O(min{log n, log σ}) for σ-bounded sequences of n disks can
be achieved even if the disk representation is not given as part of the input.

We conclude in Chapter 5 indicating possible directions for future re-
search on the problems we study.

9

10

Chapter 2

Frequency Allocation in

Cellular Networks

In this chapter, we study the frequency allocation problem in cellular
networks. We address the on-line version of the problem.

Solutions to the on-line version of the frequency allocation problem imply
the design of on-line protocols for frequency allocation in cellular networks
so that signal interference is avoided under the assumption that the number
of calls in the cells of the network changes with time.

The static version of the frequency allocation problem including the sig-
nal interference constraints can be described as follows. Let G = (V,E,w)
be an interference graph where each vertex v ∈ V is associated with a non-
negative integer weight, w(v) ≥ 0. Graph G models a static instance of the
network, its vertices represent cells while the weights represent the number
of calls in each cell to be served. The problem is essentially the proper
multicoloring of graph G, i.e., the assignment of w(v) distinct frequencies to
each vertex v so that for each edge, (u, v) ∈ E, the sets of colors assigned
to its endpoints u and v, are disjoint. We define as cost or span of the mul-
ticoloring the total number of the colors used. In particular, the objective
is the proper multicoloring of G with span equal to the minimum number
of colors required to color graph G, which is denoted by χ(G). In the con-
text of the frequency allocation problem, a multicoloring as defined before,
reflects the necessary signal interference constraints: each color stands for
a different frequency and the same frequency can be used for two calls iff
these calls originate at different, mutually non-adjacent cells. Usually, there
is a correspondance beween the available set of colors and the set of non-
negative integers. For evaluating the computational complexity of the static

11

version of the frequency allocation problem, we initially define as weight
of a maximal clique of G the sum of weights of all vertices of the clique.
Obviously, χ(G) will be at least equal to the weight of the maximal clique
of the graph, and since G is a subgraph of the infinite triangular lattice, all
possible maximal cliques will be either isolated vertices or edges or triangles.

The problem of optimally multicoloring hexagon graphs has been proved
to be NP−hard [48]. Regarding upper bounds, there is a wide range of
frequency allocation algorithms in the literature according to which few
colors are actually needed but there are still no proven bounds on their
performance ([18], [40], [41], [53], [60]). The Fixed Allocation algorithm is
a very simple algorithm, based on the fact that the underlying graph can
be colored with 3 colors. The algorithm uses three predefined, mutually
disjoint, color sets, one for each base color and, a vertex of base color 1
uses colors from the first set, while a vertex of base color 2 or 3 uses colors
from the second or third set, respectively. The Fixed Allocation algorithm
is a 3-approximation algorithm. Janssen et al. in [37] present the Fixed
Preference Allocation algorithm which uses at most 3

2 times the minimum
number of colors required. 4

3 -approximation algorithms have been presented
in [48] and [49]. In the on-line version of the frequency allocation problem,
vertex weights vary (increase) over time. These changes are modelled as a
sequence of interference graphs, Gt = (V,E,wt) : t ≥ 0, where wt is the set
of calls that must be served at time t. At each time t, an on-line algorithm
must decide how to color graph Gt before proceeding with graph Gt+1 at
time t + 1. The coloring must be carried out without any knowledge of the
graphs already appeared in the sequence.

There has been significant previous work on the on-line version of the
graph coloring problem (e.g., [57], [43], [35]), where vertices of the graph to
be colored appear gradually, one by one, in each time step, an the algorithm
must assign them a color.

The static version of the problem has been studied in [49] and [48],
while in [38] the on–line version of the problem is addressed. Janssen et al.
in [38] prove lower bounds using competitive analysis for the performance
evaluation of several frequency allocation algorithms. Among other results,
they prove that no on–line deterministic frequency allocation algorithm can
have a competitive ratio better than 2 while they mention the classic Fixed
Allocation algorithm which achieves a competitive ratio of 3.

In this chapter, we improve this competitive ratio presenting a tight com-
petitive analysis for the greedy frequency allocation algorithm (Section 2.2).
In particular, we prove that the competitive ratio of the greedy algorithm is
between 2.429 and 2.5. A recent better lower bound presented in [50] shows

12

that our analysis is tight.

2.1 The greedy frequency allocation algorithm

The Fixed Allocation algorithm [38] uses the fact that three colors, called
base colors, suffice for multicoloring the interference graph of a cellular net-
work. The algorithm uses three fixed sets of colors, one for each base color.
A cell of base color 1 uses for its calls frequencies from the first color set
while a cell of base color 2 or 3 uses colors from the second or third color set,
respectively. It can be easily seen that the number of frequencies used by the
Fixed Allocation algorithm is at most three times the number of frequencies
that the optimal off–line algorithm would need.

An intuitive deterministic algorithm for the on–line frequency allocation
problem is the greedy algorithm described as follows. The algorithm consid-
ers the frequencies as positive integers 1, 2, When a new call appears, it is
assigned the minimum available frequency so that the call does not interfere
(is not assigned the same frequency) with calls of the same or adjacent cells.
In this section we present an almost tight competitive analysis of the greedy
algorithm.

2.2 Analysis of the greedy algorithm

In this section, we present an upper bound for the competitiveness of
the greedy algorithm for the frequency allocation problem. In particular:

Theorem 1. The greedy frequency allocation algorithm is at most 2.5–
competitive against an off–line adversary when applied to a cellular network.

Proof. Let σ be a sequence of calls in a cellular network and D be the max-
imum number of calls in any three mutually adjacent cells of the network.
Obviously, D is a lower bound on the number of frequencies required for an
optimal frequency allocation to σ.

Consider the execution of the greedy algorithm on σ, and let c0 be the
cell that contains the call that was assigned the highest frequency a0. We
will prove that a0 ≤ 2.5D, proving that the greedy algorithm is at most
2.5–competitive against an off–line adversary.

We denote by x0 the number of calls in cell c0. By the definition of the
greedy algorithm, since the frequency a0 has been assigned to a call of cell
c0, the frequencies 1, ..., a0 − 1 must also have been assigned to calls of c0

13

and its surrounding cells. Note that the number of all these calls is at most
3D − 2x0. Thus, we obtain the following constraint for x0.

x0 ≤ 3D − a0

2
(2.1)

We call the six surrounding cells of c0, c1, c2, c3, c4, c5, c6, so that for the
corresponding highest frequency a1, a2, a3, a4, a5, a6 assigned to calls of
these cells, the following inequality holds:

a0 > a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5 ≥ a6

We also denote by yi(j), for 0 ≤ i 6= j ≤ 6, the number of calls in
cell cj that have been assigned higher frequencies than ai. Obviously, it is
yi(j) ≤ xj , for 0 ≤ i 6= j ≤ 6.

Consider frequency a1 assigned to some call of cell c1. It is a1 = a0 −
y1(0). Furthermore, a1 is upper–bounded by the number of calls in c1 and
its surrounding cells, ignoring the y1(0) calls of c0 (which have been assigned
frequencies higher than a1). We obtain that

x1 ≤ 3D − a0

2
(2.2)

For the frequency a2 assigned to some call of c2, it is

a2 ≥ a0 − y2(0) − y2(1) (2.3)

We now distinguish between two main cases.

CASE I: The cell c2 is adjacent to c1.

c
0

c
1

c
2

c
3

c
4

c
5

c
6

Figure 2.1: Case

In this case , a2 is upper–bounded by the number of calls in c2 and its
surrounding cells, ignoring the y2(0) calls of c0 and the y2(1) calls of c1

(which have been assigned frequencies higher than a2). The number of calls
in c2 and its surrounding cells is at most 2D − x2 + x0 + x1. Using (3), we
obtain that

x2 ≤ 2D + x0 + x1 − a0 (2.4)

14

Note that the number of calls in c0 and its surrounding cells, which is an
upper bound for a0, is at most 2D − x0 + x1 + x2. Using (2) and (4), we
obtain that

a0 ≤ 2D − x0 + x1 + x2

≤ 4D + 2x1 − a0

≤ 7D − 2a0 ⇒
a0 ≤ 7D

3
.

CASE II: The cell c2 is not adjacent to c1.

c
0

c
1

c
2

c
3

c
4

c
5

c
6

Figure 2.2: Case II

In this case, a2 is upper–bounded by the number of calls in c2 and its
surrounding cells, ignoring the y2(0) calls of c0 (which have been assigned
frequencies higher than a2). The number of calls in c2 and its surrounding
cells is at most 3D − 2x2. Using (3), we obtain that

x2 ≤ 3D − a0 + y2(1)

2
(2.5)

For the frequency a3 assigned to some call of c3, it is

a3 ≥ a0 − y3(0) − y3(1) − y3(2) (2.6)

We now distinguish between the following three cases.

CASE II.1: The cell c3 is adjacent to c1 (and possibly to c2).
In this case, a3 is upper–bounded by the number of calls in c3 and its

surrounding cells, ignoring the y3(0) calls of c0 and the y3(1) calls of c1

(which have been assigned frequencies higher than a3). The number of calls
in c3 and its surrounding cells is at most 2D − x3 + x0 + x1. Using (6), we
obtain that

x3 ≤ 2D + x0 + x1 + y3(2) − a0 (2.7)

15

c
0

c
1

c
2

c
3

c
4

c
5

c
6

Figure 2.3: Case II.1

Note that the number of calls in c0 and its surrounding cells, which is an
upper bound for a0, is at most 2D − x0 + x1 + x3. Using (2), (5), (7), and
the fact that y3(2) ≤ x2 and y2(1) ≤ x1, we obtain that

a0 ≤ 2D − x0 + x1 + x3

≤ 4D + 2x1 + y3(2) − a0

≤ 4D + 2x1 + x2 − a0

≤ 11D

2
+ 2x1 +

y2(1)

2
− 3a0

2

≤ 11D

2
+

5x1

2
− 3a0

2

≤ 37D

4
− 11a0

4
⇒

a0 ≤ 37D

15
.

CASE II.2: The cell c3 is adjacent to c2 (but not to c1).

c
0

c
1

c
2

c
3

c
4

c
5

c
6

Figure 2.4: Case II.2

In this case, a3 is upper–bounded by the number of calls in c3 and its
surrounding cells, ignoring the y3(0) calls of c0 and the y3(2) calls of c2

(which have been assigned frequencies higher than a3). The number of calls
in c3 and its surrounding cells is at most 2D − x3 + x0 + x2. Using (6), we
obtain that

x3 ≤ 2D + x0 + x2 + y3(1) − a0 (2.8)

16

Note that the number of calls in c0 and its surrounding cells, which is an
upper bound for a0, is at most 2D − x0 + x2 + x3. Using (2), (5), (8), and
the fact that y3(1) ≤ x1 and y2(1) ≤ x1, we obtain that

a0 ≤ 2D − x0 + x2 + x3

≤ 4D + 2x2 + y3(1) − a0

≤ 4D + x1 + 2x2 − a0

≤ 7D + x1 + y2(1) − 2a0

≤ 7D + 2x1 − 2a0

≤ 10D − 3a0 ⇒
a0 ≤ 5D

2
.

CASE II.3: The cell c3 is not adjacent to c1 and c2.

c
0

c
1

c
2

c
3

c
4

c
5

c
6

Figure 2.5: Case II.3

In this case, a3 is upper–bounded by the number of calls in c3 and its
surrounding cells, ignoring the y3(0) calls of c0 (which have been assigned
frequencies higher than a3). The number of calls in c3 and its surrounding
cells is at most 3D − 2x3. Using (6), we obtain that

x3 ≤ 3D − a0 + y3(1) + y3(2)

2
(2.9)

For the frequency a4 assigned to some call of c4, it is

a4 ≥ a0 − y4(0) − y4(1) − y4(2) − y4(3) (2.10)

Again, we distinguish between the following three subcases.

CASE II.3.a: The cell c4 is adjacent to c1 and c2.
In this case, a4 is upper–bounded by the number of calls in c4 and its

surrounding cells, ignoring the y4(0) calls of c0, the y4(1) calls of c1, and the
y4(2) calls of c2 (which have been assigned frequencies higher than a4). The

17

c
0

c
1

c
2

c
3

c
4

c
5

c
6

Figure 2.6: Case II.3.a

number of calls in c4 and its surrounding cells is at most 2D− x4 + x0 + x1.
Using (10), we obtain that

x4 ≤ 2D + x0 + x1 + y4(3) − a0 (2.11)

Note that the number of calls in cells c5 and c6 which are adjacent to c3 is
x5, x6 ≤ D − x0 − x3. Thus, the number of calls in c0 and its surrounding
cells, which is an upper bound for a0, is at most 2D−x0−x3 +x1 +x2 +x4.
Using (2), (5), (9), (11), and the fact that y4(3) ≤ x3 and y2(1) ≤ x1, we
obtain that

a0 ≤ 2D − x0 − x3 + x1 + x2 + x4

≤ 4D − x3 + 2x1 + x2 + y4(3) − a0

≤ 11D

2
+ 2x1 +

y2(1)

2
− 3a0

2

≤ 11D

2
+

5x1

2
− 3a0

2

≤ 37D

4
− 11a0

4
⇒

a0 ≤ 37D

15
.

CASE II.3.b: The cell c4 is adjacent to c1 and c3.

c
0

c
1

c
2

c
3

c
4

c
5

c
6

Figure 2.7: Case II.3.b

In this case, a4 is upper–bounded by the number of calls in c4 and its
surrounding cells, ignoring the y4(0) calls of c0, the y4(1) calls of c1, and the

18

y4(3) calls of c3 (which have been assigned frequencies higher than a4). The
number of calls in c4 and its surrounding cells is at most 2D −x4 + x0 + x1.
Using (10), we obtain that

x4 ≤ 2D + x0 + x1 + y4(2) − a0 (2.12)

Note that the number of calls in c0 and its surrounding cells, which is an
upper bound for a0, is at most 2D − x0 + x1 + x4. Using (2), (5), (9), (12),
and the fact that y4(2) ≤ x2 and y2(1) ≤ x1, we obtain that

a0 ≤ 2D − x0 + x1 + x4

≤ 4D + 2x1 + y4(2) − a0

≤ 4D + 2x1 + x2 − a0

≤ 11D

2
+ 2x1 +

y2(1)

2
− 3a0

2

≤ 11D

2
+

5x1

2
− 3a0

2

≤ 37D

4
− 11a0

4
⇒

a0 ≤ 37D

15
.

CASE II.3.c: The cell c4 is adjacent to c2 and c3.

c
0

c
1

c
2

c
3

c
4

c
5

c
6

Figure 2.8: Case II.3.c

In this case, a4 is upper–bounded by the number of calls in c4 and its
surrounding cells, ignoring the y4(0) calls of c0, the y4(2) calls of c2, and the
y4(3) calls of c3 (which have been assigned frequencies higher than a4). The
number of calls in c4 and its surrounding cells is at most 2D −x4 + x0 + x2.
Using (10), we obtain that

x4 ≤ 2D + x0 + x2 + y4(1) − a0 (2.13)

Note that the number of calls in c0 and its surrounding cells, which is an
upper bound for a0, is at most 2D − x0 + x2 + x4. Using (2), (5), (9), (13),

19

and the fact that y4(1) ≤ x1 and y2(1) ≤ x1, we obtain that

a0 ≤ 2D − x0 + x2 + x4

≤ 4D + 2x2 + y4(1) − a0

≤ 4D + x1 + 2x2 − a0

≤ 7D + x1 + y2(1) − 2a0

≤ 7D + 2x1 − 2a0

≤ 10D − 3a0 ⇒
a0 ≤ 5D

2
.

In any case, it is a0 ≤ 2.5D. The theorem follows.

2.3 A lower bound for the competitiveness of the

greedy algorithm

We now give a lower bound on the performance of the greedy algorithm.
In particular:

Theorem 2. The greedy algorithm is at least 2.429–competitive against an
off–line adversary when applied to a cellular network.

Proof. Consider the cellular network and the sequence of calls σ′ shown in
the left part of Figure 2.9. Calls that appear in step 1 are assigned frequency
1. At any subsequent step 2 ≤ i ≤ 17, the greedy algorithm will assign to
all the calls that appear in step i the frequency i, since the frequencies
1, 2, ..., i − 1 are already used by calls in the same or adjacent cells.

In this counterexample, the greedy algorithm uses 17 frequencies while
an optimal frequency allocation to σ′ with 7 frequencies is depicted in the
right part of Figure 2.9. Thus, the competitive ratio of the greedy algorithm
is

ρ = max
σ

CA(σ)

COPT (σ)
≥ CA(σ′)

COPT (σ′)
=

17

7
= 2.429.

In a recent paper [50] Narayanan and Tang presented a better lower
bound of 2.5 for the competitiveness of the greedy algorithm, ahich implies
that our analysis given in section 2.2 is tight.

20

1,2

5,64

10,11 7,8,9 7 3,4

14,15 12,13 10,11
4

8,9 1,21,2,3

1,2,3

10,11

1,2 7,8,9 12,13 1,2 7,8,9 1,2

3

1,2 1,24,7 8,9

1,2,3

3,4 5,6

1,2

4,5,6 16,17 4,5,6 3 5,6

3,45,65,63,4 10,11

1,2 3,4 1,2

1,2

1,23,4

3,4

3,43,4

3,4

3,4 3,4

3,4

5,6

5,6

5,6 5,6

5,6

5,6

5,6 5,6

5,6

1,2,7

1,2,7

1,2,7 1,2,7

1,2,7 1,2,7

1,2,7

3,4,5

5

1,2,7

1,2

2,3,4 1

5,63

3,4

5,6

Figure 2.9: The lower bound on the performance of the greedy algorithm.
In the left part integers correspond to the step in which a call appears. An
optimal allocation of frequencies is depicted in the right part.

21

22

Chapter 3

Call Control in Wireless

Networks

In this chapter, we study the call control (or call admission) problem
which is defined as follows:

Given users that wish to communicate, the call control problem
on a network that supports a spectrum of w available frequencies
is to assign frequencies to users so that signal interference is
avoided and the number of users served is maximized.

We assume that calls corresponding to users that wish to communicate
appear in the cells of the network in an on–line manner. When a call ar-
rives, a call–control algorithm decides either to accept the call (assigning a
frequency to it), or to reject it. Once a call is accepted, it cannot be re-
jected (preempted). Furthermore, the frequency assigned to the call cannot
be changed in the future. We assume that all calls have infinite duration;
this assumption is equivalent to considering calls of the same duration.

The static version of the call control problem is very similar to the famous
maximum independent set problem. The on–line version of the problem is
studied in [1, 3, 8, 12, 42, 52]. [1], [3], and [42] study the call control prob-
lem in the context of optical networks. Pantziou et al. [52] present upper
bounds for planar and arbitrary mobile networks. Applying the Classify

and Randomly Select paradigm [3, 52] on cellular networks, we obtain a
3–competitive randomized call control algorithm. Usually, competitive anal-
ysis of call control focuses on networks supporting one frequency. Awerbuch
et al. [1] present a simple way to transform algorithms designed for one fre-
quency to algorithms for arbitrarily many frequencies with a small sacrifice

23

in competitiveness. Lower bounds for call control in arbitrary networks are
presented in [8].

The greedy algorithm is probably the simplest on-line algorithm. When
a call arrives, the greedy algorithm seeks for the first available frequency.
If such a frequency exists, the algorithm accepts the call assigning this fre-
quency to it, otherwise, the call is rejected. In general, Pantziou et al. [52]
show that this algorithm has competitive ratio equal to the degree of the
interference graph and no better in general. The greedy algorithm is optimal
within the class of deterministic on-line call control algorithms.

Simple randomized algorithms can be defined using the “classify and
randomly select” paradigm [2, 3, 52]. Such algorithms use a coloring of
the underlying interference graph, randomly select a color out of the colors
used, and execute the greedy algorithm in the cells colored with the selected
color, ignoring (i.e., rejecting) calls in all other cells. The competitive ratio
achieved in this way, against oblivious adversaries, is equal to the number
of colors used in the coloring of the interference graph.

A detailed description of the greedy call control algorithm as well as of
the ““classify and randomly select”” paradigm can be found on Section 3.1.

In cellular networks of reuse distance 2, the greedy algorithm is 3-
competitive against off-line adversaries, in the case of one frequency. Slightly
worse competitiveness bounds can be proved in the case of arbitrarily many
frequencies using the techniques of [2, 21, 59]. In [15], using similar ar-
guments with those of [52], it was observed that no deterministic on-line
call control algorithm in cellular networks of reuse distance 2 can be better
than 3-competitive against off-line adversaries. Applying the “classify and
randomly select” paradigm using a 3-coloring of the interference graph, we
obtain a 3-competitive randomized algorithm even in the case of arbitrarily
many frequencies. Observe that this algorithm uses a very weak random
source which equiprobably selects one out of three distinct objects.

describe algorithm p–Random, an intuitive on–line randomized call con-
trol algorithm for networks that support one frequency. They present upper
and lower bounds on the competitive ratio of the algorithm as functions of
parameter p and, by optimizing these functions, they prove that, for some
value of p, the competitive ratio of algorithm p-Random against oblivious
adversaries is between 2.469 an 2.651. The analysis of algorithm p-Random

in [15] applies only to cellular networks with one frequency but it indicates
that randomization helps to beat the deterministic upper bounds. However,
the number of random bits used by the algorithm may be proportional to
the size of the network. The best known lower bound on the competitive
ratio of any randomized call control algorithm in cellular networks of reuse

24

distance 2 is 1.857 [15].
For the on-line version of the call control problem, we describe
algorithm p–Random (Section 3.2), an intuitive on–line randomized call

control algorithm for networks that support one frequency [12]. We present
upper and lower bounds on the competitive ratio of the algorithm as func-
tions of parameter p against oblivious adversaries and, by optimizing these
functions, we prove that, for some value of p, the competitive ratio of al-
gorithm p-Random against oblivious adversaries is at most 2.651. In this
way, we beat the deterministic lower bound of 3, which is the minimum com-
petitive ratio that can be achieved by deterministic algorithms in wireless
cellular networks.

These results [12, 13] hold only for networks that support one frequency
but explicitly show that randomness helps in the improvement of upper
bounds for deterministic algorithms.

In Section 3.3, we give new analytical bounds on the competitiveness
of algorithm p–Random in sparse wireless cellular networks, i.e., wireless
cellular networks in which cells may have irregular shape but the network
degree is small. We consider networks of degree three and four; for net-
works of degree three, we prove that for a specific value of p, algorithm
p–Random is 9/4–competitive for networks supporting one frequency and
2.787–competitive for networks supporting many frequencies. We also out-
line the proof for networks of degree 4; for these networks we can achieve
competitive ratios of 2.651 and 3.182 for networks supporting one and many
frequencies, respectively. Surprisingly, this matches the best known result
for ideal wireless cellular networks presented in [13].

Next, we study the on-line version of the call control in cellular networks
of reuse distance k > 2. The greedy algorithm has competitive ratio 4 and
5 in cellular networks of reuse distance k ∈ {3, 4, 5} and k ≥ 6, respectively,
which support one frequency. This is due to the fact that the acceptance
of a non-optimal call may cause the rejection of at most 4 and 5 optimal
calls, respectively. These competitive ratios are the best possible that can
be achieved by deterministic algorithms. Using the techniques of [2, 21,
59], it can be shown that, in the case of arbitrarily many frequencies, the
greedy algorithm has competitive ratio at most 4.521 and at most 5.517 in
cellular networks of reuse distance k ∈ {3, 4, 5} and k ≥ 6, respectively.
Furthermore, applying the “classify and randomly select” paradigm using
an efficient coloring of the interference graph of cellular networks of distance
reuse k > 2 would give randomized on-line algorithms with competitive ratio
Ω(k2). Even in the case of k = 3, the competitive ratio we obtain in this
way is 7.

25

In this PhD Thesis, we improve previous results on the competitiveness
of on-line call control algorithms in cellular networks (Section 3.6). We
present algorithms based on the “classify and randomly select” paradigm
which use new colorings of the interference graph. These algorithms use
a small number of random bits, and have small competitive ratios against
oblivious adversaries even in the case of arbitrarily many frequencies. In
particular, in cellular networks of reuse distance 2, we significantly improve
the best known competitiveness bounds achieved by algorithm p-Random

by presenting a series of simple randomized algorithms that have smaller
competitive ratios, work on networks with arbitrarily many frequencies, and
use only a constant number of random bits or a comparable weak random
source. The best competitiveness upper bound we obtain is 7/3. In cellular
networks of reuse distance k > 2, we present (Section 3.7) simple randomized
on-line call control algorithms with competitive ratios which significantly
beat the lower bounds on the competitiveness of deterministic algorithms
and use only O(log k) random bits. For any k > 2, the competitive ratio we
achieve is strictly smaller than 4.

No deterministic on-line call control algorithm can achieve a competitive
ratio better than 3 against off-line adversaries in cellular networks of reuse
distance 2, supporting one frequency. In Section 3.8, we extend this lower
bound to cellular networks of reuse distance k ∈ {3, 4, 5} and k ≥ 6 that
support one frequency and prove lower bounds of 4 and 5, respectively. For
randomized algorithms in cellular networks of reuse distance k ≥ 5 and
k = 12, we prove corresponding lower bounds on their competitiveness of
25/12 and 127/60, respectively, against oblivious adversaries. We consider
networks that support one frequency; these bounds can be trivially extended
to networks that support arbitrarily many frequencies.

3.1 Description of known algorithms

In this section, we briefly describe two well–known on–line algorithms
for call control in wireless cellular networks: the greedy algorithm and the
Classify and Randomly Select paradigm. Furthermore, we present a
simple way for transforming call control algorithms designed for networks
with one frequency to call control algorithms for networks with arbitrarily
many frequencies, with a small sacrifice in competitiveness. Also, we present
a lower bound on the competitiveness of deterministic on-line call control
algorithms.

Assume that a sequence of calls σ appears in a network that support

26

w frequencies 1, 2, ..., w. The greedy algorithm is an intuitive deterministic
algorithm. For any new call c at a cell v, the greedy algorithm searches for
the minimum available frequency, i.e., for the minimum frequency among
frequencies 1, 2, ..., w that has not been assigned to calls in cell v or its
adjacent cells. If such a frequency exists, the call c is accepted and is assigned
this frequency; otherwise, the call is rejected.

Pantziou et al. [52] have proved that this algorithm is at most (∆ + 1)–
competitive against off–line adversaries for networks supporting many fre-
quency (and ∆–competitive for networks supporting one frequency), where
∆ is the degree of the network. We extend their technique and prove the
following theorem.

Theorem 3. Let G = (V,E) be an interference graph, v a vertex of G,
and Γv the maximum independent set in the neighborhood of v. The greedy
algorithm is 1

1−e
− 1

γ
–competitive against an off–line adversary, where

γ = max
v∈V

|Γv|.

Proof. Let BA be the set of calls accepted by the greedy algorithm and
BOPT the set of calls accepted by the optimal algorithm.

The number of calls rejected by A because of the calls in BA\BOPT is
at most γ|BA\BOPT . Indeed, the best the optimal algorithm could do is to
reject a call ri ∈ BA\BOPT in a cell ci accepted by the greedy algorithm,
and accept at most γ calls that appear in cells adjacent to ci.

Since the network supports only one frequency, no call in BOPT ∩ BA

can cause the rejection of any other call in BOPT , because the calls in BOPT

appear in distinct not adjacent cells. Thus,

|BOPT \BA| ≤ γ|BA\BOPT | ⇒

|BOPT\BA| + |BOPT ∩ BA| ≤ γ|BA\BOPT | + |BOPT ∩ BA| ⇒
|BOPT | ≤ γ|BA|.

The lemma follows.

Awerbuch et al. in [1] present a simple way for transforming call control
algorithms designed for networks with one frequency to call control algo-
rithms for networks with arbitrarily many frequencies, with a small sacrifice
in competitiveness. Consider a wireless cellular network and a (determinis-
tic or randomized) on–line call control algorithm ALG–1 for one frequency.

27

A call control algorithm ALG for w frequencies can be constructed in the
following way. For each call c, we execute the algorithm ALG–1 for each
of the w frequencies until either c is accepted or the frequency spectrum is
exhausted (and the call c is rejected), i.e.,

1.for any new call c
2. for i = 1 to w
3. run ALG–1(c) for frequency i
4. if c was accepted then
5. assign frequency i to c
6. stop
7. reject c.

Awerbuch et al. in [1] prove that if ALG–1 is ρ–competitive, then ALG
has competitive ratio

1

1 − exp(−1/ρ)
.

In this way, we can prove that the greedy algorithm in networks that support
arbitrarily many frequencies achieves competitive ratio equal to

1

1 − exp(−1/γ)
< ∆ + 1,

using the fact that the greedy algorithm for one frequency is γ–competitive.
For cellular networks, where the interference graph is a hexagon graph,

it is γ = 3, and theorem 3 yields the following corollary.

Corollary 4. The greedy algorithm is 3.53–competitive against an off–line
adversary when applied to cellular networks.

The Classify and Randomly Select paradigm uses a coloring of the
cells of the network (coloring of the interference graph) with positive integer
(colors) 1, 2, ... in such way that adjacent cells are assigned different colors.
The randomized algorithm classifies the calls of the sequence into a number
of classes; class i contains calls appeared in cells colored with color i. It
then selects uniformly at random one of the classes, and considers only calls
that belong to the selected class, rejecting all other calls. Once a call of the
selected class appears, the greedy algorithm is used.

Using simple arguments, Awerbuch et al. in [3] (see also Pantziou et
al. [52]) prove that the Classify and Randomly Select algorithm is χ–
competitive against oblivious adversaries, where χ is the number of colors
used in the coloring of the cells of the network. This may lead to algorithms

28

with competitive ratio equal to the chromatic number (and no better, in gen-
eral) of the corresponding interference graph, given that an optimal coloring
(i.e., with the minimum number of colors) is available. Note that, in wireless
cellular networks of degree ∆, the chromatic number of the corresponding
interference graph may be up to ∆ + 1.

Theorem 5 ([1, 52]). Algorithm ACRS is 3-competitive against oblivious
adversaries.

note that γ is a lower bound for the competitive ratio of every deter-
ministic algorithm. Consider a network that supports one frequency and is
composed of a cell v and γ mutually non-adjacent cells v1, v2, · · · , vγ which
are adjacent to v. Consider, now, the following sequence of calls produced
by an adversary that has knowledge of the way that the algorithm makes
its decisions. First, a call c is presented in cell v. If the algorithm rejects
c, then the adversary stops the sequence. In this case, the algorithm has no
benefit from its execution. If the algorithm accepts the call c, the adversary
presents γ calls c1, c2, ..., cγ in cells v1, v2, ..., vγ , respectively. The benefit
of the algorithm is then 1 while the optimal algorithm would obtain benefit
γ by rejecting call c and accepting the calls c1, ..., cγ .

For cellular networks, the following theorem holds:

Theorem 6. No deterministic algorithm can be better than 3-competitive
against an off-line adversary.

Obvisouly, the best the algorithm A can do is to accept all calls presented
in cells which are non-adjacent to cells where a previously accepted calls are
located. But this is exactly what the greedy algorithm does for networks
that support one frequency.

Recent work of Trevisan [55] on the maximum independent set prob-
lem on bounded–degree graphs implies that, in general, the static version of
the call control problem on networks of degree ∆ is inapproximable within

O
(

∆/2O(
√

log ∆)
)

. This means that practical (i.e., algorithms which make

their decisions in polynomial time) on-line randomized algorithms with com-
petitive ratio asymptotically better than O(∆1−ǫ) for some ǫ > 0 are infea-
sible.

3.2 Algorithm p–Random

In this section, we present and analyze the algorithm p–Random, a
randomized call control algorithm for cellular networks that support one

29

frequency. Algorithm p–Random receives as input a sequence of calls in an
on–line manner, and works as follows.

1.Initially, all cells are unmarked.
2.for any new call c in a cell v
3. if v is marked then reject c.
4. if v has an accepted call or is adjacent to a cell

with an accepted call, then reject c
5. else
6. with probability p accept c.
7. with probability 1 − p reject c and mark v.

The algorithm uses a parameter p ∈ [1/∆, 1], where ∆ is the degree of
the network. Obviously, if it is p < 1/∆, the competitive ratio will be greater
than ∆, since the expected benefit of the algorithm on a sequence of a single
call will be p. The algorithm is simple and can be easily implemented with
small communication overhead (exchange of messages) between the base
stations of the network.

Marking cells on rejection guarantees that algorithm p–random does not
simulate the greedy deterministic one. Assume otherwise, that marking is
not used. Then, consider an adversary that presents t calls in a cell v and one
call in ∆ (mutually not adjacent) cells adjacent to v. The probability that
the randomized algorithm does not accept a call in cell v drops exponentially
as t increases, and the benefit approaches 1, while the optimal benefit is ∆.

Note that algorithm p–Random may accept at most one call in each cell
but this is also the case for any algorithm running in networks that support
one frequency (including the optimal one). Thus, for the competitive anal-
ysis of algorithm p–Random, we will only consider sequences of calls with
at most one call per cell. Also, there is no need for taking into account the
procedure of marking cells during the analysis.

We now prove the upper bound on the competitive ratio of algorithm
p–Random as a function of p. Our main statement is the following.

Theorem 7. For p ∈ [1/3, 1], algorithm p–random has competitive ratio
at most

3

5p − 7p2 + 3p3

against oblivious adversaries.

Proof. Let σ be a sequence of calls. We assume that σ has been fixed in
advance and will be revealed to the algorithm in an on–line manner. We

30

make this assumption because we are interested in the competitiveness of
the algorithm against oblivious adversaries whose knowledge is limited to
the probability distribution of the random choices of the algorithm (i.e., the
parameter p).

Consider the execution of algorithm p–random on σ. For any call c ∈ σ,
we denote by X(c) the random variable that indicates whether the algorithm
accepted c. Clearly, the benefit of algorithm p–Random on σ can be ex-
pressed as

B(σ) =
∑

c∈σ

X(c).

Let A(σ) be the set of calls in σ accepted by the optimal algorithm. For
each call c ∈ A(σ), we define the amortized benefit b̄(c) as

b̄(c) = X(c) +
∑

c′∈γ(c)

X(c′)
d(c′)

,

where γ(c) denotes the set of calls of the sequence in cells adjacent to c.
For each call c′ 6∈ A(σ), d(c′) is the number of calls in A(σ) that are in cells
adjacent to the cell of c. By the two equalities above, it is clear that

B(σ) =
∑

c∈A(σ)

b̄(c).

Furthermore, note that for any call c′ 6∈ A(σ), d(c′) ≤ 3. We obtain that

b̄(c) ≥ X(c) +

∑

c′∈γ(c) X(c′)

3

and, by linearity of expectation,

E [B(σ)] ≥
∑

c∈A(σ)

(

E
[

X(c) +

∑

c′∈γ(c) X(c′)

3

])

(3.1)

Let γ′(c) be the set of calls in cells adjacent to the cell of c which appear
prior to c in the sequence σ. Clearly, γ′(c) ⊆ γ(c), which implies that

∑

c′∈γ(c)

X(c′) ≥
∑

c′∈γ′(c)

X(c′).

Thus, (3.14) yields

E [B(σ)] ≥
∑

c∈A(σ)

(

E
[

X(c) +

∑

c′∈γ′(c) X(c′)

3

])

(3.2)

31

In what follows we will try to bound from below the expectation of the

random variable X(c) +
P

c′∈γ′(c) X(c′)

3 , for each call c ∈ A(σ).

We concentrate on a call c ∈ A(σ). Let Ω = 2γ′(c) be the set which
contains all possible subsets of γ′(c). We define the effective neighborhood of
c, denoted by Γ(c), to be the subset of γ′(c) that contains the calls of γ′(c)
which, when they appear, they are unconstrained by calls of σ at distance 2
from c. Clearly, Γ(c) is a random variable taking its values from the sample
space Ω. Intuitively, whether an optimal call c is accepted by the algorithm
depends on its effective neighborhood Γ(c). We have

E
[

X(c) +

∑

c′∈γ′(c) X(c′)

3

]

=

∑

γ∈Ω

E
[

X(c) +

∑

c′∈γ X(c′)

3
|Γ(c) = γ

]

· Pr[Γ(c) = γ] ≥

min
γ∈Ω

{

E
[

X(c) +

∑

c′∈γ X(c′)

3
|Γ(c) = γ

]}

=

min
γ∈Ω

{

E [X(c)|Γ(c) = γ] +
E [
∑

c′∈γ X(c′)|Γ(c) = γ]

3

}

(3.3)

To compute E [X(c)|Γ(c) = γ], we observe that algorithm p–Random

may accept c only if it has rejected all calls in its effective neighborhood
γ. The probability that all calls of γ are rejected given that Γ(c) = γ is
(1 − p)|γ|, and then c is accepted with probability p. Thus,

E [X(c)|Γ(c) = γ] = p(1 − p)|γ|. (3.4)

We now bound from below E [
∑

c′∈γ X(c′)|Γ(c) = γ] by distinguishing
between cases according to the size of the effective neighborhood |γ|.

Claim 8. For all p ∈ [1/3, 1],

E

∑

c′∈γ

X(c′)|Γ(c) = γ

 ≥

0 if |γ| = 0
p if |γ| = 1
2p − p2 if |γ| = 2
3p − 2p2 if |γ| = 3
4p − 3p2 + p3 if |γ| = 4
5p − 4p2 + p3 if |γ| = 5
6p − 5p2 + p3 if |γ| = 6

32

Figure 3.1: The cases |γ| = 0, 1, 2.

Figure 3.2: The case |γ| = 3.

Proof. In Figures 3.1, 3.2, 3.3, 3.4, and 3.5 we give all possible cases for the
effective neighborhood of an optimal call c in a sequence of calls σ. In each
figure the optimal call is denoted by the black circle in the middle cell while
black circles in the outer cells denote calls in the effective neighborhood γ
of c. An arrow from a call c1 to another call c2 indicates that c1 appears in
σ prior to c2. In the figures, we have eliminated the symmetric cases.

The proof is trivial for the cases |γ| = 0 and |γ| = 1 (the two leftmost
cases in Figure 3.1). In the third case of Figure 3.1 (where |γ| = 2), we
observe that the algorithm accepts the first call in γ with probability p and
the second one with probability p(1 − p). In total, the expectation of the
number of accepted calls in γ is 2p−p2. In the rightmost case of Figure 3.1,
the expectation of the number of accepted calls in γ is 2p < 2p − p2.

Figure 3.3: The case |γ| = 4.

33

Figure 3.4: The case |γ| = 5.

Figure 3.5: The case |γ| = 6.

Similarly, we can compute the desired lower bounds on E [
∑

c′∈γ X(c′)|Γ(c) =
γ] for the cases |γ| = 3, 4, 5, 6.

By making calculations with (3.16), (3.17), and Claim 8, we obtain that

E
[

X(c) +

∑

c′∈γ′(c) X(c′)

3

]

≥

min
γ∈Ω

{

E [X(c)|Γ(c) = γ] +
E [
∑

c′∈γ X(c′)|Γ(c) = γ]

3

}

≥

min
γ∈Ω:|γ|=2

E [X(c)|Γ(c) = γ] +
E
[

∑

c′∈γ X(c′)|Γ(c) = γ
]

3

≥

p(1 − p)2 +
2p − p2

3
=

5p − 7p2 + 3p3

3

34

Now, using (3.15) we obtain that

E [B(σ)] ≥
∑

c∈A(σ)

5p − 7p2 + 3p3

3

=
5p − 7p2 + 3p3

3
· BOPT (σ)

This completes the proof of Theorem 7.

The expression in Theorem 7 is minimized to 729/265 = 2.651 for p =
5/9. Thus, we obtain the following result.

Corollary 9. There exists an on–line randomized call control algorithm
for cellular networks with one frequency which is at most 2.651–competitive
against oblivious adversaries.

In the following, we show that our analysis is not far from being tight.
In particular, we prove the following.

Theorem 10. The competitive ratio of algorithm p–Random against obliv-
ious adversaries is at least

max

{

3

4p − 3p2
,

3

5p − 7p2 + 4p3 − p4

}

.

Proof. We will prove the lower bound by constructing two sequences σ1 and
σ2 of calls for which the competitive ratio of algorithm p–Random is 3

4p−3p2

and 3
5p−7p2+4p3−p4 , respectively.

Sequence σ1 is depicted in the left part of Figure 3.6. In round 1, a
call appears at some cell c, and in round 2 one call appears in each one
of the three mutually adjacent cells in the neighborhood of c. Clearly, the
benefit of the optimal algorithm is 3. To compute the expectation of the
benefit of algorithm p–Random, we observe that with probability p, the
call presented in round 1 is accepted, and with probability 1 − p, the call
presented in round 1 is rejected and each of the three calls presented in
round 2 is accepted with probability p. Thus, the expectation of the benefit
of the algorithm on sequence σ1 is p + (1 − p)3p = 4p − 3p2.

Sequence σ2 is depicted in the right part of Figure 3.6. Calls appear
in four rounds. The labels on the calls denote the round in which the
calls appear. Clearly, the benefit of the optimal algorithm is 18 since the
optimal algorithm would accept the calls which appear in rounds 3 and 4. To
compute the expectation of the benefit of algorithm p–Random on sequence
σ2, we first compute the probability that each call is accepted.

35

1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

13

3

3
3

3

3

3

3

3

3

3

3

4

4 4

4

44

Figure 3.6: The lower bound on the performance of algorithm p–Random.

• A call which appears in round 1 is accepted with probability p.

• A call which appears in round 2 can be accepted if its adjacent call
which appeared in round 1 has been rejected; thus, the probability
that a call which appears in round 2 is accepted is p(1 − p).

• A call which appears in round 3 can be accepted if its adjacent calls
which appeared in rounds 1 and 2 have been rejected; thus, the prob-
ability that a call which appears in round 3 is accepted is p(1 − p)2.

• A call which appears in round 4 can be accepted if its adjacent calls
which appeared in rounds 1 and 2 have been rejected. The probability
that a call which appears in round 1 is rejected is 1 − p while the
probability that a call which appears in round 2 is rejected is 1 − p −
(1− p)2. Thus, the probability that a call which appears in round 4 is
accepted is p(1 − p)

(

1 − p − (1 − p)2
)

.

Note that the number of calls that appear in rounds 1, 2, 3, and 4 is 6, 6,
12, and 6, respectively. Thus, we obtain that the expectation of the benefit
of the algorithm is

6p+6p(1−p)+12p(1−p)2+6p(1−p)
(

1 − p − (1 − p)2
)

= 5p−7p2+4p3−p4.

36

This completes the proof of the theorem.

The expression in Theorem 10 is minimized for p ≈ 0.6145 to 2.469.
Thus, we obtain the following corollary.

Corollary 11. For any p ∈ (1/3, 1), algorithm p–Random is at least 2.469–
competitive against oblivious adversaries.

Let p∗ ∈ (1/3, 1) be that value such that algorithm p∗–Random has
better competitive ratio than any algorithm p–Random, for p ∈ [1/3, 1].
By Theorem 10 and Corollary 9, solving the inequality

max

{

3

4p − 3p2
,

3

5p − 7p2 + 4p3 − p4

}

≤ 729

275

we obtain the following.

Corollary 12. p∗ ∈ [0.421, 0.843].

Discussion

We have computed upper and lower bounds on the competitiveness of
algorithm p–Random in cellular networks that support one frequency as a
function of p. A graphical representation of both functions is depicted in
Figure 3.7. Note that there is still a small gap between the upper and the
lower bound which is up to 0.25 for some values of p.

So far, we have addressed the case of networks supporting one frequency.
A call control algorithm for w frequencies can be constructed in the following
way. For each call c, we execute the algorithm p–Random for each of the w
frequencies until either c is accepted or the frequency spectrum is exhausted
(and the call c is rejected). Using this technique (which is analyzed by
Awerbuch et al. in [1]), we obtain a call control algorithm for networks with
w frequencies with competitive ratio

1

1 −
(

1 − 1
wρ(p)

)w

where ρ(p) is the competitive ratio of algorithm p–Random in networks
supporting one frequency. The competitive ratio we achieve in this way for
two frequencies is 2.927. Unfortunately, for larger numbers of frequencies,
the competitive ratio we obtain using the same technique is larger than 3.

37

Figure 3.7: A graphical representation of the the upper and the lower bound
on the competitiveness of algorithm p–Random for p ∈ [1/3, 1].

3.3 Analysis of algorithm p-Random in sparse net-

works

In this section we provide the analysis of the competitiveness of algorithm
p–Random. We first present the analysis which is not network specific.
Then, using our analysis, we prove the upper bound on the competitive
ratio of the algorithm for networks of degree three (in Section 3.3.1) and,
we outline the proof of the upper bound for networks of degree four (in
Section 3.3.2).

Let σ be a sequence of calls. We assume that σ has been fixed in advance
and will be revealed to the algorithm in an on–line manner. We make this
assumption because we are interested in the competitiveness of the algorithm
against oblivious adversaries whose knowledge is limited to the probability
distribution of the random choices of the algorithm (i.e., the parameter p).

Consider the execution of algorithm p–Random (for some p ∈ [0, 1]) on
σ. For any call c ∈ σ, we denote by X(c) the random variable that indicates
whether the algorithm accepted c, i.e.,

X(c) =

{

0 if c is rejected
1 if c is accepted

38

Obviously,

B(σ) =
∑

c∈σ

X(c).

Let A(σ) be the set of calls in σ accepted by the optimal algorithm. For
each call c ∈ A(σ), we define the amortized benefit b̄(c) as

b̄(c) = X(c) +
∑

c′∈γ(c)

X(c′)
d(c′)

,

where γ(c) denotes the set of calls of the sequence in cells adjacent to c.
For each call c′ 6∈ A(σ), d(c′) is the number of calls in A(σ) that are in cells
adjacent to the cell of c′. By the two equalities above, it is clear that

B(σ) =
∑

c∈A(σ)

b̄(c).

Thus, by linearity of expectation,

E [B(σ)] =
∑

c∈A(σ)

E

X(c) +
∑

c′∈γ(c)

X(c′)
d(c′)

 (3.5)

Let γ′(c) be the set of calls in cells adjacent to the cell of c which appear
prior to c in the sequence σ. Clearly, γ′(c) ⊆ γ(c), which implies that

∑

c′∈γ(c)

X(c′)
d(c′)

≥
∑

c′∈γ′(c)

X(c′)
d(c′)

.

Thus, (1) yields

E [B(σ)] ≥
∑

c∈A(σ)

E

X(c) +
∑

c′∈γ′(c)

X(c′)
d(c′)

≥ |A(σ)| min
c∈A(σ)

E

X(c) +
∑

c′∈γ′(c)

X(c′)
d(c′)

(3.6)

In what follows we will try to bound from below the expectation of the
random variable

Y (c) = X(c) +
∑

c′∈γ′(c)

X(c′)
d(c′)

,

39

for each call c ∈ A(σ).
We concentrate on a call c ∈ A(σ). Let Ω = 2γ′(c) be the set which

contains all possible subsets of γ′(c). We define the effective neighborhood of
c, denoted by Γ(c), to be the subset of γ′(c) that contains the calls of γ′(c)
which, when they appear, they are unconstrained by calls of σ at distance 2
from c. Clearly, Γ(c) is a random variable taking its values from the sample
space Ω. Intuitively, whether an optimal call c is accepted by the algorithm
depends on its effective neighborhood Γ(c). We have

E [Y (c)] =
∑

γ∈Ω

E

X(c) +
∑

c′∈γ

X(c′)
d(c′)

|Γ(c) = γ

 · Pr[Γ(c) = γ]

≥ min
γ∈Ω

E

X(c) +
∑

c′∈γ

X(c′)
d(c′)

|Γ(c) = γ

= min
γ∈Ω

E [X(c)|Γ(c) = γ] + E

∑

c′∈γ

X(c′)
d(c′)

|Γ(c) = γ

(3.7)

To compute E [X(c)|Γ(c) = γ], we observe that algorithm p–Random

may accept c only if it has rejected all calls of in its effective neighborhood
γ. The probability that all calls of γ are rejected given that Γ(c) = γ is
(1 − p)|γ|, while then c is accepted with probability p. Thus,

E [X(c)|Γ(c) = γ] = p(1 − p)|γ|. (3.8)

Bounding from below E
[

∑

c′∈γ
X(c′)
d(c′) |Γ(c) = γ

]

is more complicated. In

Sections 3.3.1 and 3.3.2, we consider two cases of sparse networks, i.e., net-
works of degree three and four.

Now, once we have computed a lower bound for E [Y (c)] for each call
c ∈ A(σ), by (2) and the definition of the competitive ratio, we can compute
an upper bound on the competitive ratio ρ(p) of algorithm p–Random as

ρ(p) ≤
(

min
c∈A(σ)

E [Y (c)]

)−1

(3.9)

3.3.1 Analysis of algorithm p-Random in networks of maxi-

mum degree 3

Assume that the calls of the sequence σ appear in the cells of a network
of degree three. Then, for each call c accepted by the optimal algorithm,

40

we consider all possible configurations of the effective neighborhood of c. A
configuration is depicted in Figure 3.8. The call c is the call accepted by the
optimal algorithm. This call is adjacent to calls c1, c2, c3. Arrows represent
time; for example, the arrow from c1 to c means that c1 appeared prior to
c. Note that a valid configuration has no directed cycle in the neighborhood
of c and arrows between c and its adjacent calls are destined for c.

c1

c
2

c
3

c

σ

1σ

2

Figure 3.8: A configuration of the effective neighborhood of an optimal call
c.

The sequence σ depicted in Figure 3.8 also contains the subsequences
σ1 and σ2. The particular configuration for c will not be considered in our
analysis for the following reason. Assume that the optimal algorithm accepts
the set of calls A(σ) = {c} ∪ A(σ1) ∪ A(σ2), where A(σ1) and A(σ2) denote
the subsets of A(σ) which consist of calls in σ1 and σ2, respectively. Note
that A′(σ) = {c3} ∪A(σ1) ∪A(σ2) contains no mutually adjacent calls and,
furthermore, has size equal to the size of A(σ). Thus, we may assume that
A′(σ) is the set of optimal calls and consider a much simpler configuration
for c3. So, we obtain another constraint for the configurations we have to
consider in our analysis: the optimal call has at most one common neighbor
with any of its adjacent calls. In a network with degree three, the six
configurations we have to consider are depicted in Figure 3.9. Symmetric
cases have been omitted.

We denote by Bi the expectation of Y (c) given that the effective neigh-
borhood of c has the configuration γi, for i = 0, 1, ..., 5.

Clearly, by (3.4), we have that

B0(c) = p (3.10)

For configuration γ1, we have that d(c1) ≤ 3, since the network has

maximum degree three. Clearly, E
[

∑

c′∈γ
X(c′)
d(c′) |Γ(c) = γ1

]

≥ p/3 and, using

41

c1

c1c1

c
2

c
2

c
3

c1

c1

c
2

c
2

c
3

c c

c c

c

c

(0) (1) (2)

(4) (5)(3)

Figure 3.9: The six configurations we have to consider in our analysis. (i)
corresponds to configuration γi.

(3.4), we obtain that

B1(c) ≥ p(1 − p) + p/3

= 4p/3 − p2 (3.11)

For configuration γ2, we again have that d(c1) ≤ 3 and d(c2) ≤ 3 and

E
[

∑

c′∈γ
X(c′)
d(c′) |Γ(c) = γ2

]

≥ 2p/3. Using (3.4), we obtain that

B2(c) ≥ p(1 − p)2 + 2p/3

= 5p/3 − 2p2 + p3 (3.12)

For configuration γ3, we again have that d(c1) ≤ 3, d(c2) ≤ 3, d(c3) ≤ 3 and

E
[

∑

c′∈γ
X(c′)
d(c′) |Γ(c) = γ3

]

≥ p. Using (3.4), we obtain that

B3(c) ≥ p(1 − p)3 + p

= 2p − 3p2 + 3p3 − p4 (3.13)

For configuration γ4, we have that d(c1) ≤ 2 and d(c2) ≤ 2, since the

network has maximum degree three. To compute E
[

∑

c′∈γ
X(c′)
d(c′) |Γ(c) = γ4

]

observe that c1 is accepted with probability p while c2 is accepted with
probability p if c1 was previously rejected, i.e., the probability that c2 is
accepted is p(1 − p). Thus,

E

∑

c′∈γ

X(c′)
d(c′)

|Γ(c) = γ4

 ≥ p/2 + p(1 − p)/2

= p − p2/2

42

Using (3.4), we obtain that

B4(c) ≥ p(1 − p)2 + p − p2/2

= 2p − 5p2/2 + p3 (3.14)

For configuration γ5, we have that d(c1) ≤ 2, d(c2) ≤ 2 and d(c3) ≤ 3, since
the network has maximum degree three. Using the same reasoning as above,
we have

E

∑

c′∈γ

X(c′)
d(c′)

|Γ(c) = γ5

 ≥ p/2 + p(1 − p)/2 + p/3

= 4p/3 − p2/2

Using (3.4), we obtain that

B4(c) ≥ p(1 − p)3 + 4p/3 − p2/2

= 7p/3 − 7p2/2 + 3p3 − p4 (3.15)

Now, the expectation of Y (c) can be expressed as

E [Y (c)] ≥ min
i

Bi(c) (3.16)

By making simple calculations with (3.7)–(3.11), we may verify that (since
p ∈ [0, 1])

B1(c) ≤ min{B2(c), B3(c), B4(c), B5(c)}.

For p ≥ 1/3 (which contains the range of p in which we are interested for
improving known results), (3.6) and (3.7) also yield B1(c) ≤ B0(c). Thus,
for p ∈ [1/3, 1], B1(c) is a lower bound for E [Y (c)] for each call c ∈ A(σ)
which only depends on p. Using (3.5), we obtain that for p ∈ [1/3, 1], the
competitive ratio of algorithm p–Random is

ρ(p) ≤ 3

4p − 3p2
.

The right side of the above inequality is minimized for p = 2/3 to 9/4.
We have obtained the following theorem.

Theorem 13. There exists a 9/4–competitive randomized on–line call con-
trol algorithm for sparse wireless cellular networks of degree three that sup-
port one frequency.

43

Using the technique of Awerbuch et al., we can transform this algorithm
to work with many frequencies. We obtain the following corollary.

Corollary 14. There exists a 2.787–competitive randomized on–line call
control algorithm for sparse wireless cellular networks of degree three that
support many frequencies.

3.3.2 Analysis of algorithm p-Random in networks of maxi-

mum degree 4

In this section we outline the proof for the competitiveness of algorithm
p–Random on networks of degree four. Assume that the calls of the se-
quence σ appear in the cells of a network of degree four. Again, for each call
c accepted by the optimal algorithm, we consider all possible configurations
of the effective neighborhood of c. These configuration are constructed as
in the previous section and now have the following constraints:

– At most four calls appear prior to c.

– There is no directed cycle in the neighborhood of c and arrows between
c and its adjacent calls are destined for c.

– The optimal call c has at most two common neighbors with any of its
adjacent calls.

In a network with degree four, we have to consider twenty three config-
urations instead of six that we considered for networks of degree three. Due
to the limited space, we will not list all these configurations here. We de-
note by B′

i(c) the expectation of Y (c) given that the effective neighborhood
of c has the configuration γ′

i, for i = 0, 1, ..., 22. We will just compute the
expectation B′

4(c) of Y (c) given that the effective neighborhood of c has the
configuration γ′

4 which is the same with configuration γ4 of Figure 3.9.

We have that d(c1) ≤ 3 and d(c2) ≤ 3, since the network has maximum

degree four. To compute E
[

∑

c′∈γ
X(c′)
d(c′) |Γ(c) = γ′

4

]

, observe that c1 is ac-

cepted with probability p while c2 is accepted with probability p if c1 was
previously rejected, i.e., the probability that c2 is accepted is p(1−p). Thus,

E

∑

c′∈γ

X(c′)
d(c′)

|Γ(c) = γ4

 ≥ p/3 + p(1 − p)/3

= 2p/3 − p2/3

44

Using (4), we obtain that

B′
4(c) ≥ p(1 − p)2 + 2p/3 − p2/3

= 5p/3 − 7p2/3 + p3 (3.17)

Using similar reasoning as in Section 3.3.1, by examining all configura-
tions, we can verify that, for some range of p, B′

4(c) = mini B′
i(c). Thus,

for this specific range of p, B′
4(c) is a lower bound for E [Y (c)] for each call

c ∈ A(σ) which only depends on p. Using (3.5), we obtain that for the
specific range of p, the competitive ratio ρ′(p) of algorithm p–Random is

ρ′(p) ≤ 3

5p − 7p2 + 3p3
.

The right side of the above inequality is minimized for p = 5/9 to
729/275 = 2.651. We have obtained the following theorem.

Theorem 15. There exists a 2.651–competitive randomized on–line call con-
trol algorithm for sparse wireless cellular networks of degree four that support
one frequency.

Surprisingly, this bound matches the best known result for ideal wireless
cellular networks presented in [13]. Using the technique of Awerbuch et al.,
we can transform this algorithm to work with many frequencies. We obtain
the following corollary.

Corollary 16. There exists a 3.182–competitive randomized on–line call
control algorithm for sparse wireless cellular networks of degree four that
support many frequencies.

3.4 Analysis of algorithm p-Random in arbitrary

networks

Now, we extend the analysis of algorithm p–Random to arbitrary net-
works supporting one frequency. We express the result in terms of the
maximum degree ∆ of the network. Pantziou et al. [52] study the com-
petitiveness of algorithm 1

∆–Random on the average case, and prove that
its competitive ratio on sequences of calls generated according to specific
probability distributions is significantly smaller than the average degree of
the network. Using a simple probabilistic argument, we prove the following
result.

45

Theorem 17. For any network with maximum degree ∆ ≥ 2, there exists
a 27∆/28–competitive randomized call control algorithm against oblivious
adversaries.

Proof. Let G be a network with maximum degree ∆. Consider the execution
of algorithm p–Random (with 1/∆ < p ≤ 1) on a sequence σ of calls on G.
Following the notation of Theorem 7, we have that the expectation of the
amortized benefit for each call c accepted by the optimal algorithm is

E [b̄(c)] ≥ X(c) +

∑

c′∈γ′(c) X(c′)

∆
,

while the expectation of the benefit of the algorithm on σ is given by

E [B(σ)] =
∑

c∈A(σ)

E [b̄(c)].

Let q(c) be the probability that
∑

c′∈γ′(c) X(c′) = 0, i.e., that no call is
accepted in the effective neighborhood of c. Then

E [b̄(c)] ≥ q(c)p +
1 − q(c)

∆

= q(c)

(

p − 1

∆

)

+
1

∆
.

Note that q(c) ≥ (1 − p)∆, for any c ∈ σ. Thus,

E [b̄(c)] ≥ (1 − p)∆
(

p − 1

∆

)

+
1

∆
.

The right part of the expression is maximized for p = 2
∆+1 . In this case, we

obtain that

E [b̄(c)] ≥
(

1 − 2

∆ + 1

)∆(2

∆ + 1
− 1

∆

)

+
1

∆

=
1

∆

(

(

1 − 2

∆ + 1

)∆+1

+ 1

)

≥ 1

∆

(

1

27
+ 1

)

=
28

27∆

46

We conclude that1, for the benefit of algorithm 2
∆+1–Random, the fol-

lowing inequality holds:

BOPT (σ) ≤ 27∆

28
E [B(σ)].

The theorem follows.

Note that using a theorem of Awerbuch et al. [1], theorem 17 implies
the existence of a randomized call control algorithm for arbitrarily many
frequencies with competitive ratio at most 27∆/28 + 1.

Now consider a network G and let α(G) be the maximum independent
set in the neighborhood of each node. As pointed out in Section 3.1, for any
network, |α(G)| is a lower bound on the competitive ratio of any determin-
istic algorithm. By inserting |α(G)| in the proof of Theorem 17, we obtain
the following.

Corollary 18. For any network that supports one frequency with |α(G)| ≥ 2
and 1/2 < p < 1, algorithm p–Random has (strictly) better competitive ratio
than any deterministic algorithm.

Obviously, if |α(G)| = 1 or |α(G)| = 0, the greedy deterministic algo-
rithm is optimal.

3.5 A simple 8/3-competitive algorithm

In this section we present algorithm CRS-A, a simple randomized on-
line algorithm for call control in cellular networks of reuse distance 2. The
algorithm works in networks with one frequency and achieves a competitive
ratio against oblivious adversaries which is similar (but slightly inferior) to
that which has been proved for algorithm p-Random.

Algorithm CRS-A uses a coloring of the cells with four colors 0, 1, 2,
and 3, such that only two colors are used in the cells belonging to the same
axis. This can be done by coloring the cells in the same x-axis with either
the colors 0 and 1 or the colors 2 and 3, coloring the cells in the same y-axis
with either the colors 0 and 2 or the colors 1 and 3, and coloring the cells in

1Observe that the inequalities on E [̄b(c)] imply that

lim
∆→∞

∆E [̄b(c)] = 1 + e
−2

.

Thus, for graphs with sufficiently large maximum degree ∆, algorithm 2
∆+1

–Random is
at most (0.8808 + ǫ)∆–competitive for some small ǫ > 0.

47

the same z-axis with either the colors 0 and 3 or the colors 1 and 2. Such a
coloring is depicted in the left part of Figure 3.10.

Algorithm CRS-A randomly selects one out of the four colors and exe-
cutes the greedy algorithm on the cells colored with the other three colors,
ignoring (i.e., rejecting) all calls in cells colored with the selected color.

0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0

2 2 2 2 2

2 2 2 2

2 2 2 2 2

2 3 2 3 2 3 2 3

1 0 1 0 1 0 1 0 1

1 0 1 00 1 0 1 0

2 3 2 3 2 3 2 3 2

1 0 1 0 1 0 1 0

3 2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1 0 1

1

2

0

1

0

Figure 3.10: The 4-coloring used by algorithm CRS-A and the corresponding
subgraph of the interference graph induced by the nodes not colored with
color 3.

Theorem 19. Algorithm CRS-A in cellular networks of reuse distance 2
supporting one frequency is 8/3-competitive against oblivious adversaries.

Proof. Let σ be a sequence of calls and denote by O the set of calls accepted
by the optimal algorithm. Denote by σ′ the set of calls in cells which are
not colored with the color selected and by O′ the set of calls the optimal
algorithm would have accepted on input σ′. Clearly, |O′| will be at least
as large as the subset of O which belongs to σ′. Since the probability that
the cell of a call in O is not colored with the color selected is 3/4, it is
E [|O′|] ≥ 3

4 |O|. Now let B be the set of calls accepted by algorithm CRS-
A, i.e., the set of calls accepted by the greedy algorithm when executed on
sequence σ′. Observe that each call in O′ either belongs in B or it is rejected
because some other call is accepted. Furthermore, a call in B \O′ can cause
the rejection of at most two calls of O′. This implies that |B| ≥ |O′|/2 which
yields that the competitive ratio of algorithm CRS-A is

|O|
E [|B|] ≤

2|O|
E [|O′|] ≤

8

3
.

The main advantage of algorithm CRS-A is that it uses only two random
bits. In the next section we present simple on-line algorithms with improved

48

competitive ratios that use slightly stronger random sources and work on
networks with arbitrarily many frequencies.

3.6 ““Classify and Randomly select””-based Algorithms

Algorithm CRS-A can be seen as an algorithm based on the “classify and
randomly select” paradigm. It uses a coloring of the interference graph (not
necessarily using the minimum possible number of colors) and a classification
of the colors. It starts by randomly selecting a color class (i.e., a set of
colors) and then run the greedy algorithm in the cells colored with colors
from this color class, ignoring (i.e., rejecting) calls in cells colored with
colors not belonging to this class. Algorithm CRS-A uses a coloring of
the interference graph with four colors 0, 1, 2, and 3, and the four color
classes {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, and {1, 2, 3}. Note that, in the previously
known algorithms based on the “classify and randomly select” paradigm,
color classes are singletons (e.g., [2], [52]).

The following simple lemma gives a sufficient condition for obtaining
efficient on-line algorithms based on the “classify and randomly select”
paradigm.

Lemma 20. Consider a network with interference graph G = (V,E) which
supports w frequencies and let χ be a coloring of the nodes of V with the
colors of a set X. If there exist ν sets of colors s0, s1, ..., sν−1 ⊆ X and an
integer λ such that

• each color of X belongs to at least λ different sets of the sets s0, s1, ..., sν−1,
and

• for i = 0, 1, ..., ν − 1, each connected component of the subgraph of G
induced by the nodes colored with colors in si is a clique,

then there exists an on-line randomized call control algorithm for the network
G which has competitive ratio ν/λ against oblivious adversaries.

Proof. Consider a network with interference graph G which supports w fre-
quencies and the randomized on-line algorithm working as follows. The
algorithm randomly selects one out of the ν color classes s0, ..., sν−1 and ex-
ecutes the greedy algorithm on the cells colored with colors of the selected
class, rejecting all calls in cells colored with colors not in the selected class.

Let σ be a sequence of calls and let O be the set of calls accepted by
the optimal algorithm on input σ. Assume that the algorithm selects the

49

color class si. Let σ′ be the sequence of calls in cells colored with colors
in si and O′ be the set of calls accepted by the optimal algorithm on input
σ′. Also, we denote by B the set of calls accepted by the algorithm. First
we can easily show that |B| = |O′|. Let Gj be a connected component
of the subgraph of G induced by the nodes of G colored with colors in
si. Let σj be the subsequence of σ′ in cells corresponding to nodes of Gj .
Clearly, any algorithm (including the optimal one) will accept at most one
call of σj at each frequency. If the optimal algorithm accepts w calls, this
means that the sequence σj has at least w calls and the greedy algorithm,
when executed on σ′, will accept w calls from σj (one call in each one of
the available frequencies). If the optimal algorithm accepts w′ < w calls
from σj , this means that σj contains exactly w′ < w calls and the greedy
algorithm will accept them all in w′ different frequencies. Since a call of σj

is not constrained by a call in σj′ for j 6= j′, we obtain that |B| = |O′|.
The proof is completed by observing that the expected benefit of the

optimal algorithm on input σ′ over all possible sequences σ′ defined by the
random selection of the algorithm is E [|O′|] ≥ ν

λ
|O|, since, for each call in O,

the probability that the color of its cell belongs to the color class selected is
at least ν/λ. Hence, the competitive ratio of the algorithm against oblivious
adversaries is

|O|
E [|B|] =

|O|
E [|O′|] ≤ λ/ν.

Next, we present two randomized on-line algorithms for call control in
cellular networks of reuse distance 2, namely CRS-B and CRS-C, which are
also based on the “classify and randomly select” paradigm and achieve even
better competitive ratios.

Consider a coloring of the cells with five colors 0, 1, 2, 3, and 4 such that
for each i ∈ {0, 1, 2, 3, 4}, and for each cell colored with color i, the two
adjacent cells in the same x-axis are colored with colors (i − 1) mod 5 and
(i + 1) mod 5, while the remaining four of its adjacent cells are colored
with colors (i + 2) mod 5 and (i + 3) mod 5. Such a coloring is depicted
in the left part of Figure 3.11. Also, define si = {i, (i + 1) mod 5}, for
i = 0, 1, ..., 4. Observe that, for each i = 0, 1, ..., 4, each pair of adjacent
cells colored with the colors i and (i + 1) mod 5 is adjacent to cells colored
with colors (i + 2) mod 5, (i + 3) mod 5, and (i + 4) mod 5, i.e., colors
not belonging to si. Thus, the coloring χ together with the color classes si

satisfy the conditions of Lemma 20 with ν = 5 and λ = 2. We call CRS-B
the algorithm that uses this coloring and works according to the “classify

50

and randomly select” paradigm as in the proof of Lemma 20. We obtain the
following.

0 1 2 43 4 0 1 2 3

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

3 4 0 10 1 2 3 4

3 4 0 10 1 2 3 4

3 4 0 10 1 2 3 4

0 1 2 13 4 5 26 0

5 6 0 61 2 3 04 5

3 4 5 46 0 1 52 3

1 2 3 24 5 6 30 1

6 0 13 4 5 2 3 4

2 3 46 0 1 5 6 0

4 5 61 2 3 0 1 2

Figure 3.11: The 5-coloring used by algorithm CRS-B and the 7-coloring
used by algorithm CRS-C. The skewed cells are those colored with the colors
in set s0.

Theorem 21. Algorithm CRS-B in cellular networks with reuse distance 2
is 5/2-competitive against oblivious adversaries.

Now consider a coloring of the cells with seven colors 0, 1, ..., 6 such
that for each for each cell colored with color i (for i = 0, ..., 6), its two
adjacent cells in the same x-axis are colored with the colors (i − 1) mod 7
and (i+1) mod 7, while its two adjacent cells in the same z-axis are colored
with colors (i−3) mod 7 and (i+3) mod 7. Such a coloring is depicted in the
right part of Figure 3.11. Also, define si = {i, (i+1) mod 7, (i+3) mod 7},
for i = 0, 1, ..., 6. Observe that, for each i = 0, 1, ..., 6, each triangle of cells
colored with the colors i, (i + 1) mod 7, and (i + 3) mod 7 is adjacent to
cells colored with colors (i + 2) mod 7, (i + 4) mod 7, (i + 5) mod 7, and
(i + 6) mod 7, i.e., colors not belonging to si. Thus, the coloring χ together
with the color classes si satisfy the conditions of Lemma 20 with ν = 7
and λ = 3. We call CRS-C the algorithm that uses this coloring and works
according to the “classify and randomly select” paradigm as in the proof of
Lemma 20. We obtain the following.

Theorem 22. Algorithm CRS-C in cellular networks with reuse distance 2
is 7/3-competitive against oblivious adversaries.

The two algorithms above (CRS-B and CRS-C) make use of a random
source which equiprobably selects one out of an odd number of distinct
objects. If we only have a number of fair coins (random bits) available,
we can design algorithms with small competitive ratios by combining the

51

algorithms above. For example, using 6 random bits, we may construct the
following algorithm. We use integers 0, 1, ..., 63 to identify each of the 63
outcomes of the 6 random bits. For an outcome i ∈ {0, ..., 49}, the algorithm
executes algorithm CRS-B using color class si mod 5, and for an outcome
i ∈ {50, ..., 63}, the algorithm executes algorithm CRS-C using color class
s(i−50) mod 7. It can be easily seen that this algorithm has competitive ratio
32/13 ≈ 2.462 against oblivious adversaries, since its expected benefit is at
least 50/64 · 2/5 + 14/64 · 3/7 = 13/32 times the optimal benefit. Similarly,
using 8 random bits, we obtain an on-line algorithm with competitive ratio
64/27 ≈ 2.37. We can generalize this idea, and, for sufficiently small ǫ >
0, we can construct an algorithm which uses t = O(log 1/ǫ) random bits,
and, on 2t mod 7 of the 2t outcomes, it does nothing, while the rest of the
outcomes are assigned to executions of algorithm CRS-C. In this way, we
obtain the following.

Corollary 23. For any ǫ > 0, there exists an on-line randomized call-control
algorithm for cellular networks with reuse distance 2 that uses O(log 1/ǫ)
random bits and has competitive ratio at most 7/3 + ǫ against oblivious
adversaries.

3.7 Networks of reuse distance k > 2

For cellular networks with reuse distance k > 2, we present algorithm
CRS-k which is based on the “classify and randomly select” paradigm. Al-
gorithm CRS-k uses the following coloring of the interference graph of a
cellular network with reuse distance k. Cells are colored with the colors
0, 1, ..., 3k2 − 3k such that for any cell colored with color i, its adjacent
cells in the x-axis are colored with colors (i − 1) mod (3k2 − 3k + 1) and
(i+1) mod (3k2−3k+1), while its adjacent cells in the z-axis are colored with
colors (i−3(k−1)2) mod (3k2−3k+1) and (i+3(k−1)2) mod (3k2−3k+1).

For odd k, for i = 0, 1, ..., 3k2−3k, the color class si contains the following
colors. For j = 0, 1, ..., k−1

2 , it contains the colors (i + 3j(k − 1)2 − j) mod

(3k2 − 3k + 1), ..., (i + 3j(k − 1)2 + k−1
2) mod (3k2 − 3k + 1), and for

j = k+1
2 , ..., k − 1, it contains the colors (i + 3(k−1)3

2 + 3(j − k−1
2)(k − 1)2 −

k−1
2) mod (3k2 − 3k + 1), ..., (i + 3(k−1)3

2 + 3(j − k−1
2)(k − 1)2 + k − 1 −

j) mod (3k2 − 3k + 1).

For even k, for i = 0, 1, ..., 3k2 − 3k, the color class si contains the
following colors. For j = 0, 1, ..., k

2 − 1, it contains the colors (i + 3j(k −
1)2 − j) mod (3k2 − 3k + 1), ..., (i+ 3j(k − 1)2 + k

2) mod (3k2 − 3k + 1), and

52

for j = k
2 , ..., k − 1, it contains the colors (i + 3(k

2 − 1)(k − 1)2 + 3(j − k
2 +

1)(k − 1)2 − k
2 + 1) mod (3k2 − 3k + 1), ..., (i + 3(k

2 − 1)(k − 1)2 + 3(j − k
2 +

1)(k − 1)2 + k − 1 − j) mod (3k2 − 3k + 1).
Note that, for k = 2, we obtain the coloring used by algorithm CRS-C.

Examples of the coloring for k = 3 and k = 4 as well as the cells colored
with colors from the color class s0 are depicted in Figure 3.12.

We can show the following two lemmas.

Lemma 24. Let k > 2 and G be the interference graph of a cellular network
of distance reuse k. Consider the coloring of G used by algorithm CRS-k
and the color classes si, for i = 0, 1, ..., 3k2 − 3k. For any color j such that
0 ≤ j ≤ 3k2−3k, the number of different color classes si that color j belongs
to is 3k2

4 if k is even, and 3k2+1
4 if k is odd.

Lemma 25. Let k > 2 and G be the interference graph of a cellular network
of distance reuse k. Consider the coloring of G used by algorithm CRS-k
and the color classes si, for i = 0, 1, ..., 3k2 − 3k. For i = 0, 1, ..., 3k2 − 3k,
each connected component of the subgraph of G induced by the nodes of G
colored with colors in si is a clique.

Thus, the colorings and the color classes described satisfy the condition
of Lemma 20 with λ = 3k2 − 3k + 1 and ν = 3k2

4 if k is even, and ν = 3k2+1
4

if k is odd. By Lemma 20, we obtain the following.

Theorem 26. The competitive ratio against oblivious adversaries of algo-
rithm CRS-k in cellular networks with reuse distance k ≥ 2 is 4

(

1 − 3k−1
3k2

)

if k is even, and 4
(

1 − 3k
3k2+1

)

if k is odd.

Algorithm CRS-k in cellular networks of reuse distance k uses a random
source which equiprobably selects one among 3k2 − 3k + 1 distinct objects.
By applying ideas we used in the previous section, we can achieve similar
competitiveness bounds by algorithms that use random bits.

Corollary 27. For any ǫ > 0, there exists an on-line randomized call-control
algorithm for cellular networks of reuse distance k, that uses O(log 1/ǫ +
log k) random bits and has competitive ratio at most 4

(

1 − 3k−1
3k2

)

+ ǫ if k is

even, and 4
(

1 − 3k
3k2+1

)

+ ǫ if k is odd, against oblivious adversaries.

3.8 Lower Bounds

In Section 3.1, it has been observed that no deterministic on-line call
control algorithm can have a competitive ratio better than 3 against off-
line adversaries. We can easily extend this lower bound and obtain lower

53

12 16 17 1814 1513 0 1 2 3 4 5 7 8 9 106

16 17 1814 15130 1 2 3 4 5 7 8 9 10 11 126

16 17 1814 15135 7 8 9 10 11 126 0 1 2 34

16 17 18 14130 1 2 3 4 5 7 8 9 10 11 126

5 6 73 429 10 11 12 13 15 16 17 18 0 1148

1

13

6

18

11

4

16 17 1814 15132 3 4 5 7 8 9 10 11 126

14 1512 13110 1 2 3 5 6 7 8 9 104

7 16 1714 15138 9 10 11 12

5 14 1512 13116 7 8 9 10

1614 1512 13

1816 1714 15 0 1 2 3 4 5 6 7

17 18 0 1 2 3 4 5

1 2 3

5

9 10

16 17

12

18

6 7

16 17 18 0

8 9 10 11

0 1 2 3

0 1 2 3 4 5 7 8 16 17 189 10 11 126 14 1513

654321036353433323130292827

333231302928272625242322212019181716 34

23222120191817161514131211109876

7

3332 34 3635 10987654321 131211

22

12

21

2827

17

76

33 34 3635 10987654321 131211

232221201918171615141312111098 24

2322

12

141312111098765432

3332313029282726252423 34 3635 210

11 151413 2928272625242322212019181716

1514131211109876543 181716

3332313029 34 3635 87654321

33323130292827262524232221201918 34

1 1918171615

151413 28272625242322212019181716 29

33323130292827262524 34 3635 3210

0

0

0

Figure 3.12: Examples of the colorings used by the algorithms CRS-3 and
CRS-4. The skewed cells are those colored with the colors in set s0.

54

bounds of 4 and 5 on the competitiveness of deterministic on-line call control
algorithms in cellular networks of reuse distance k ∈ {3, 4, 5} and k ≥ 6,
respectively.

Consider a cellular network of reuse distance k supporting one frequency.
The lower bound can be easily extended for networks supporting arbitrarily
many frequencies. Let v be a cell of the network and consider the cells at
distance at most k − 1 from v. It can be easily verified that we can pick

a set S of
⌊

6(k−1)
k

⌋

cells at distance at most k − 1 from v such that the

distance between any two of them is at least k. Consider a deterministic
algorithm A and an off-line adversary ADV working as follows. First the
adversary presents a call in cell v. If the algorithm A rejects the call, the
adversary stops the sequence; in this case A has no benefit. Otherwise (i.e.,
if A accepts the call in cell v), the adversary presents one call in each of the
cells of S. In this case, the benefit of the algorithm A is 1, while the optimal
off-line algorithm has benefit the size of S which is 4 if k ∈ {3, 4, 5} and 5 if
k ≥ 6.

Hence, the randomized algorithms presented in the previous section sig-
nificantly beat the lower bound on the competitiveness of deterministic al-
gorithms. In what follows, using the Minimax Principle [61] (see also [47]),
we prove a lower bound on the competitive ratio, against oblivious adver-
saries, of any randomized algorithm in cellular networks with reuse distance
k ∈ {2, 3, 4}, k ∈ {5, · · · , 11}, k ≥ 12, as well as for cellular networks with
planar interference graphs. Again, we consider networks that support one
frequency; our lower bound can be trivially extended to networks that sup-
port multiple frequencies.

Lemma 28 (Minimax Principle [47]). Given a probability distribution P
over sequences of calls σ, denote by EP [BA(σ)] and EP [BOPT (σ)] the expected
benefit of a deterministic algorithm A and the optimal off–line algorithm on
sequences of calls generated according to P. Define the competitiveness of A
under P, cPA to be such that

cPA =
EP [BOPT (σ)]

EP [BA(σ)]
.

Let AR be a randomized algorithm. Then, the competitiveness of A under
P is a lower bound on the competitive ratio of AR against an oblivious
adversary, i.e. cPA ≤ cAR

.

Theorem 29. No randomized call–control algorithm can be better than
1.857–competitive against an oblivious adversary when applied to cellular
networks of reuse distance k ∈ {2, 3, 4}.

55

Proof. Consider a proper coloring of the cells of the network with the col-
ors red, blue, and green. Let r0 be a red cell, b1, b2, and b3 its blue
neighbors, and g1, g2, and g3 its green neighbors. We will prove that there
exists an adversary ADV that produces calls according to a probability dis-
tribution P in such way that no deterministic algorithm can be better than
1.857–competitive under P even if it knows the probability distribution P
in advance.

We define the probability distribution P as follows. First, the adversary
produces a call in the red cell r0. Then, it

• either stops, with probability 4/7,

• or does the following, with probability 3/7. It presents two calls in the
cells b1 and b2, and

– either produces a call in the cell b3 with probability 1/3,

– or presents three calls in the cells g1, g2, and g3, with probability
2/3.

It can be easily seen that the expected benefit of the optimal off–line
algorithm on sequences of calls generated according to P is

EP [BOPT (σ)] = 1 · 4

7
+ 3 · 3

7
=

13

7
.

Let A be a deterministic call control algorithm that runs on the calls
produced by ADV. Consider t executions of the algorithm on t sequences
produced according to the probability distribution P. Let q0 be the number
of executions in which A accepts the call produced in cell r0, and q1 the
number of executions in which A accepts both calls in cells b1 and b2.

The expected number of executions in which the algorithm does not
accept the call in cell r0 and the adversary produces a call in cell b3 is 3

7
1
3(t−

q0). Similarly, the expected number of executions in which the algorithm
does not accept the calls in cells r0, b1, and b2 and the adversary produces
calls in cells g1, g2, g3 is 2

3

(

3
7(t − q0) − q1

)

. Thus,

EP [BA(σ)] ≤ q0 + 2q1 + 3
7

1
3(t − q0) + 32

3

(

3
7(t − q0) − q1

)

t
= 1

and

cPA ≥ 13

7
= 1.857.

56

By Lemma 28, we obtain that this is a lower bound on the competitive ratio
of any randomized algorithm against an oblivious adversary.

Theorem 30. No randomized call–control algorithm in cellular networks
with distance reuse k ≥ 5 can be better than 25/12–competitive against an
oblivious adversary.

Proof. Consider a cellular network with reuse distance 5 and ten cells v0,
vA,1, vA,2, vB,1, vB,2, vB,3, vC,1, vC,2, vC,3, and vC,4 as shown in Figure 3.14.
We will prove that there exists an adversary ADV that produces calls in
these cells according to a probability distribution P in such way that no
deterministic algorithm can be better than 25/12–competitive under P even
if it knows the probability distribution P in advance.

v
C,1

v
A,1

v
B,2

v
C,2

v
0

v
C,3

v
B,3

v
A,2

v
C,4

v
B,1

v
A,2

v
0

v
A,1

v
B,3

v
B,1

v
B,2

v
C,4

v
C,3

v
C,2

v
C,1

Figure 3.13: The cellular network of reuse distance 5 used in the proof of
Theorem 9 and the subgraph of the interference graph induced by the nodes
corresponding to the ten cells v0, vA,1, vA,2, vB,1, vB,2, vB,3, vC,1, vC,2, vC,3,
and vC,4.

We define the probability distribution P as follows. First, the adversary
produces a call in the cell v0. Then, it

• either stops, with probability 1/2,

• or does the following, with probability 1/2. It presents two calls, one
in the cell vA,1 and one in the cell vA,2, and

– either stops, with probability 1/3,

– or does the following with probability 2/3. It presents three calls,
one in the cell vB,1, one in the cell vB,2, and one in the cell vB,3,
and

57

∗ either stops, with probability 1/4,

∗ or does the following, with probability 3/4. It presents four
calls, one in the cell vC,1, one in the cell vC,2, one in the cell
vC,3, and one in the cell vC,4, and then stops.

Clearly, the benefit of the optimal off-line algorithm is the number of calls
presented by the adversary in the last step before stopping the sequence.
Thus, the expected benefit of the optimal off–line algorithm on sequences of
calls generated according to P is

EP [BOPT (σ)] = 1 · 1

2
+ 2 · 1

2
· 1

3
+ 3 · 1

2
· 2

3
· 1

4
+ 4 · 1

2
· 2

3
· 3

4
=

25

12
.

Let A be a deterministic call control algorithm that runs on the calls
produced by ADV. First, we observe that no algorithm could gain by ac-
cepting one of the two calls presented in cells vA,1 and vA,2 or by accepting
one or two of the three calls presented in cells vB,1, vB,2 and vB,3 . Assume
that it rejects the call in cell v0, accepts the call in cell vA,1 (resp. vA,2) and
rejects the call in cell vA,2 (resp. vA,1). Then, even if the adversary does
not stop the sequence just after producing the two calls in cells vA,1 and
vA,2, the algorithm can only accept one of the two calls in the cells vB,3 and
vC,3 (resp. vB,1 and vC,1); this would give a benefit of at most 2. Also, no
algorithm could gain by accepting one of the three calls presented in cells
vB,1, vB,2, and vB,3. Assume that the algorithm rejects the calls in cells
v0, vA,1 and vA,2, accepts the call in cell vB,1 (resp. vB,2, resp. vB,3), and
rejects the calls in cells vB,2 and vB,3 (resp. vB,1 and vB,3, resp. vB,2 and
vB,3). Then, even if the adversary does not stop the sequence before pro-
ducing the calls in the cells vC,1, vC,2, vC,3, and vC,4, the algorithm can only
accept the calls in the cells vC,2 and vC,3 (resp. vC,3 and vC,4, resp. vC,1 and
vC,2); this would give a benefit of at most 3. Also, no algorithm could gain
by accepting two of the three calls presented in cells vB,1, vB,2, and vB,3.
Assume that the algorithm rejects the calls in the cells v0, vA,1, and vA,2,
accepts the calls in the cells vB,2 and vB,3 and rejects the call in cell vB,1.
Then, even if the adversary does not stop the sequence before producing
the calls in cells vC,1, vC,2, vC,3, and vC,4, the algorithm cannot accept any
more calls. Similarly, assume that the algorithm rejects the calls in cells v0,
vA,1 and vA,2, accepts the calls in cells vB,1 and vB,2 (resp. vB,1 and vB,3),
and rejects the call in cell vB,3 (resp. vB,2). Then, even if the adversary
does not stop the sequence before producing the calls in the cells vC,1, vC,2,
vC,3, and vC,4, the best the algorithm can do is to accept the call in cell vC,3

(resp. vC,2); this would give a benefit of at most 3. The above observations

58

can be easily made by studying carefully the subgraph of the interference
graph induced by the ten cells v0, vA,1, vA,2, vB,1, vB,2, vB,3, vC,1, vC,2, vC,3,
and vC,4 (see right part of Figure 3.14). Hence, we may assume that the
algorithm either accepts all calls presented at a step or rejects them all.

Consider t executions of the algorithm on t sequences produced according
to the probability distribution P. Let q0 be the number of executions in
which A accepts the call produced in cell v0, q1 the number of executions
in which A accepts both calls in cells vA,1 and vA,2, and q2 the number of
executions in which the algorithm accepts the three calls in cells vC,1, vC,2,
and vC,3.

The expected number of executions in which the algorithm does not ac-
cept the call in cell v0 and the adversary produces calls in cells vA,1 and
vA,2 is 1

2 (t − q0). Hence, the expected number of executions in which the
algorithm does not accept the calls in cells v0, vA,1, and vA,2 and the adver-
sary produces calls in cells vB,1, vB,2, and vB,3 is 2

3

(

1
2 (t − q0) − q1

)

and the
expected number of executions in which the algorithm does not accept the
calls in cells v0, vA,1, vA,2, vB,1, vB,2, and vB,3 and the adversary produces
calls in cells vC,1, vC,2, vC,3, and vC,4 is 3

4

(

2
3

(

1
2(t − q0) − q1

)

− q2

)

. Thus,

EP [BA(σ)] ≤ q0 + 2q1 + 3q2 + 43
4

(

2
3

(

1
2 (t − q0) − q1

)

− q2

)

t
= 1

and cPA ≥ 25/12. By Lemma 28, we obtain that this is a lower bound on the
competitiveness of any randomized algorithm against oblivious adversaries.

Theorem 31. No randomized call–control algorithm in cellular networks
with distance reuse k = 12 can be better than 127/60–competitive against an
oblivious adversary.

Proof. Consider a cellular network with distance reuse 12 and thirteen cells
v0, vA,1, vA,2, vA,3, vB,1, vB,2, vB,3, vB,4, vC,1, vC,2, vC,3, vC,4 and vC,5 as
shown in Figure 3.14. We will prove that there exists an adversary ADV that
produces calls in these cells according to a probability distribution P in such
way that no deterministic algorithm can be better than 127/60–competitive
under P even if it knows the probability distribution P in advance.

We define the probability distribution P as follows. First, the adversary
produces a call in the cell v0. Then, it

• either stops, with probability 2/3,

• or does the following, with probability 1/3. It presents three calls, one
in the cell vA,1, one in the cell vA,2 and one in the cell vA,3, and

59

Figure 3.14: The cellular network of distance reuse 12 used in the proof of
Theorem 9 and the subgraph of the interference graph induced by the nodes
corresponding to the thirteen cells v0, vA,1, vA,2, vA,3, vB,1, vB,2, vB,3, vB,4,
vC,1, vC,2, vC,3, vC,4 and vC,5.

– either stops, with probability 1/4,

– or does the following with probability 3/4. It presents four calls,
one in the cell vB,1, one in the cell vB,2, one in the cell vB,3, and
one in the cell vB,4, and

∗ either stops, with probability 1/5,

∗ or does the following, with probability 4/5. It presents five
calls, one in the cell vC,1, one in the cell vC,2, one in the cell
vC,3, one in the cell vC,4, and one in the cell vC,5, and then
stops.

Clearly, the benefit of the optimal off-line algorithm is the number of calls
presented by the adversary in the last step before stopping the sequence.
Thus, the expected benefit of the optimal off–line algorithm on sequences of
calls generated according to P is

EP [BOPT (σ)] = 1 · 2

3
+ 3 · 1

3
· 1

4
+ 4 · 1

3
· 3

4
· 1

5
+ 5 · 1

3
· 3

4
· 4

5
=

127

60
.

Let A be a deterministic call control algorithm that runs on the calls
produced by ADV. First, we observe that no algorithm could gain by ac-
cepting one of the three calls presented in cells vA,1, vA,2 and vA,3. Assume
that it rejects the call in cell v0, accepts the call in cell vA,1 (resp. vA,2,
resp.vA,3) and rejects the call in cell vA,2 and vA,3 (resp. vA,1 and vA,2, resp.
vA,1 and vA,2). Then, even if the adversary does not stop the sequence just
after producing the three calls in cells vA,1, vA,2 and vA,3, the algorithm can
only accept the two calls in the cells vB,3 and vB,4 (resp. vB,1 and vB,4, resp.
vB,1 and vB,2); this would give a benefit of at most 3.

Similarly, no algorithm could gain by accepting two of the three calls
presented in cells vA,1, vA,2, and vA,3. Assume that the algorithm rejects
the calls in the cells v0, accepts the calls in the cells vA,1 and vA,2 and rejects
the call in cell vA,3. Then, even if the adversary does not stop the sequence
before producing the calls in cells vB,1, vB,2, vB,3, vB,4, vC,1, vC,2, vC,3, vC,4,
and vC,5, the algorithm cannot accept any more calls. Assume, also, that the
algorithm accepts the calls in the cells vA,1 and vA,3 (resp. vA,2 and vA,3)
and rejects the call in cell vA,2 (resp. vA,1). Then, even if the adversary

60

does not stop the sequence before producing the calls in cells vB,1, vB,2,
vB,3, vB,4, vC,1, vC,2, vC,3, vC,4, and vC,5, the algorithm can only accept the
call presented in cell vC,2 (resp. vC,1); this would give a benefit of at most
3.

Also, no algorithm could gain by accepting one of the four calls presented
in cells vB,1, vB,2, vB,3, and vB,4. Assume that the algorithm rejects the calls
in cells v0, vA,1, vA,2, and vA,3, accepts the call in cell vB,1 (resp. vB,2, resp.
vB,3, resp. vB,4), and rejects the calls in cells vB,2, vB,3, and vB,4 (resp. vB,1,
vB,3, and vB,4, resp. vB,1, vB,2, and vB,4, resp. vB,1, vB,2, and vB,3). Then,
even if the adversary does not stop the sequence before producing the calls
in the cells vC,1, vC,2, vC,3, vC,4, and vC,5, the algorithm can only accept the
calls in the cells vC,2, vC,3 and vC,4 (resp. vC,1, vC,3 and vC,4, resp. vC,1,
vC,4 and vC,5, resp. vC,2, vC,3 and vC,5); this would give a benefit of at most
4.

Also, no algorithm could gain by accepting two of the four calls presented
in cells vB,1, vB,2, vB,3, and vB,4. Assume that the algorithm rejects the calls
in the cells v0, vA,1, vA,2, and vA,3, accepts the calls in the cells vB,1 and
vB,2 (resp. vB,2 and vB,3, resp. vB,1 and vB,4) and rejects the calls in cells
vB,3 and vB,4 (resp. vB,1 and vB,4, resp. vB,2 and vB,3). Then, even if the
adversary does not stop the sequence before producing the calls in cells vC,1,
vC,2, vC,3, vC,4, and vC,5, the algorithm could only accept the calls presented
in cells vC,3 and vC,4 (resp. vC,1 and vC,4, resp. vC,2 and vC,3); this would
give a benefit of at most 4. Similarly, assume that the algorithm rejects the
calls in the cells v0, vA,1, vA,2, and vA,3, accepts the calls in the cells vB,1

and vB,3 (resp. vB,2 and vB,4, resp. vB,3 and vB,4) and rejects the calls in
cells vB,2 and vB,4 (resp. vB,1 and vB,3, resp. vB,1 and vB,2). Then, even
if the adversary does not stop the sequence before producing the calls in
cells vC,1, vC,2, vC,3, vC,4, and vC,5, the algorithm could only accept the call
presented in cell vC,4 (resp. vC,3, resp. vC,5); this would give a benefit of at
most 3.

Also, no algorithm could gain by accepting three of the four calls pre-
sented in cells vB,1, vB,2, vB,3, and vB,4. Assume that the algorithm rejects
the calls in the cells v0, vA,1, vA,2, and vA,3, accepts the calls in the cells vB,1,
vB,2 and vB,3 (resp. vB,1, vB,2 and vB,4) and rejects the calls in cells vB,4

(resp. vB,3). Then, even if the adversary does not stop the sequence before
producing the calls in cells vC,1, vC,2, vC,3, vC,4, and vC,5, the algorithm
could only accept the call presented in cell vC,4 (resp. vC,3); this would give
a benefit of at most 4. Similarly, assume that the algorithm accepts the calls
in the cells vB,1, vB,3 and vB,4 (resp. vB,2, vB,3 and vB,4) and rejects the
calls in cells vB,2 (resp. vB,1). Then, even if the adversary does not stop the

61

sequence before producing the calls in cells vC,1, vC,2, vC,3, vC,4,and vC,5,
the algorithm cannot accept any more calls. This would give a benefit of at
most 3.

Also, no algorithm could gain by accepting all of the four calls presented
in cells vB,1, vB,2, vB,3, and vB,4. Then, even if the adversary does not stop
the sequence before producing the calls in cells vC,1, vC,2, vC,3, vC,4, and
vC,5, the algorithm cannot accept any more calls; this would give a benefit
of at most 4.

The above observations can be easily made by studying carefully the
subgraph of the interference graph induced by the thirteen cells v0, vA,1,
vA,2, vA,3, vB,1, vB,2, vB,3, vB,4, vC,1, vC,2, vC,3, vC,4, and vC,5 (see right part
of Figure 3.14). Hence, we may assume that the algorithm either accepts all
calls presented at a step or rejects them all.

Consider t executions of the algorithm on t sequences produced according
to the probability distribution P. Let q0 be the number of executions in
which A accepts the call produced in cell v0, q1 the number of executions
in which A accepts the three calls in cells vA,1, vA,2, and vA,3, and q2 the
number of executions in which the algorithm accepts the four calls in cells
vC,1, vC,2, vC,3, and vC,4.

The expected number of executions in which the algorithm does not
accept the call in cell v0 and the adversary produces calls in cells vA,1,
vA,2 and vA,3 is 1

3(t − q0). Hence, the expected number of executions in
which the algorithm does not accept the calls in cells v0, vA,1, vA,2, and
vA,3 and the adversary produces calls in cells vB,1, vB,2, vB,3, and vB,4

is 3
4

(

1
3(t − q0) − q1

)

and the expected number of executions in which the
algorithm does not accept the calls in cells v0, vA,1, vA,2, vA,3, vB,1, vB,2,
vB,3, and vB,4 and the adversary produces calls in cells vC,1, vC,2, vC,3, vC,4,
and vC,5 is 4

5

(

3
4

(

1
3(t − q0) − q1

)

− q2

)

. Thus,

EP [BA(σ)] ≤ q0 + 3q1 + 4q2 + 54
5

(

3
4

(

1
3(t − q0) − q1

)

− q2

)

t
= 1

and cPA ≥ 127/60. By Lemma 28, we obtain that this is a lower bound
on the competitive ratio of any randomized algorithm against an oblivious
adversary.

The lower bound for planar networks follows. Note that the best known
upper bound is 4 achieved by the Classify and Randomly Select algo-
rithm [1, 52].

62

Theorem 32. There exists a planar network on which no randomized call–
control algorithm can be better than 2.086–competitive against oblivious ad-
versaries.

Proof. Consider a planar network with the interference graph shown in Fig-
ure 3.15. We will prove that there exists an adversary ADV that produces
calls according to a probability distribution P in such way that no deter-
ministic algorithm can be better than 2.086–competitive under P even if it
knows the probability distribution P in advance.

c

c

c c c c c c

c

c 4

8 9

12

10 11

1
2 c c 5

6 7

0

3c

Figure 3.15: The planar interference graph used in the proof of Theorem 32.

We define the probability distribution P as follows. First, the adversary
produces a call in cell c0. Then, it

• either stops, with probability 4/5,

• or does the following, with probability 1/5. It presents a call in cells
c1, ..., c5, and

– either stops with probability 2/7,

– or presents a call in cells c6, ..., c12, with probability 5/7.

It can be easily seen that the expected benefit of the optimal off–line
algorithm on sequences of calls generated according to P is

EP [BOPT (σ)] = 1 · 4

5
+ 5 · 1

5
· 2

7
+ 7 · 1

5
· 5

7
=

73

35
.

Let A be a deterministic call control algorithm that runs on the calls
produced by ADV. Consider t executions of the algorithm on t sequences
produced according to the probability distribution P. Let q0 be the number
of executions in which A accepts the call produced in cell c0, and q1 the
number of executions in which A accepts both calls in cells c1 and c2.

63

The expected number of executions in which the algorithm does not
accept the call in cell c0 and the adversary produces calls in cells c1, ..., c5

is 1
5 (t − q0). Similarly, the expected number of executions in which the

algorithm does not accept the calls in cells c0, c1, ..., c5 and the adversary
produces calls in cells c6, ..., c12 is 5

7

(

1
5 (t − q0) − q1

)

. Thus,

EP [BA(σ)] ≤ q0 + 5q1 + 75
7

(

1
5(t − q0) − q1

)

t
= 1,

and

cPA ≥ 73

35
= 2.086.

By Lemma 28, we obtain that this is a lower bound on the competitive ratio
of any randomized algorithm against an oblivious adversary.

64

Chapter 4

Disk Graphs

4.1 Introduction

We study two fundamental graph problems, maximum independent set
and minimum coloring. Given a graph G, the maximum independent set
problem is to find an independent set (i.e., a set of nodes without edges
between them) of maximum size, while the minimum coloring problem is
to find an assignment of colors (i.e, positive integers) to the nodes of the
graph so that no two nodes connected by an edge are assigned the same color
and the number of colors used is minimized. We consider graphs modelling
intersections of disks in the plane.

The intersection graph of a set of disks in the Euclidean plane is the
graph having a node for each disk and an edge between two nodes if and
only if the corresponding disks overlap. Each disk is defined by its radius
and the coordinates of its center. Two disks overlap if the distance between
their centers is strictly smaller than the sum of their radii. A graph G is
called a disk graph if there exists a set of disks in the Euclidean plane whose
intersection graph is G. The set of disks is called the disk representation
of G. A disk graph is called unit disk graph if all disks in its disk rep-
resentation have the same radius. A disk graph is σ-bounded if the ratio
between the maximum and the minimum radius among all the disks in its
disk representation is at most σ.

In disk graphs, maximum independent set and minimum coloring are
important since they can model resource allocation problems in radio com-
munication networks [29]. Consider a set of transmitters located in fixed
positions within a geographical region. Each transmitter uses a specific fre-
quency to transmit its messages. Two transmitters can successfully (i.e.,

65

without signal interference) transmit messages simultaneously either if they
use different frequencies or if they use the same frequency and their ranges
do not overlap. Given a set of transmitters in a radio network, in order
to guarantee successful transmissions simultaneously, important engineer-
ing problems that have to be solved are the frequency assignment problem
where the objective is to minimize the number of frequencies used all over
the network, and the call admission problem where the objective is to find
a maximum-sized set of transmitters which can use the same frequency. As-
suming that all transmitters have circular range, the graph reflecting possible
interference between pairs of transmitters is a disk graph. The frequency
assignment and call admission problems are equivalent to minimum coloring
and maximum independent set problems, respectively.

An instance of the maximum independent set or the minimum coloring
problem may or may not include the disk representation (i.e., disk center
coordinates and/or radii) of the disk graph as part of the input. Clearly, the
latter case is more difficult. Information about the disk representation of a
disk graph is not easy to extract. Actually, determining whether a graph is
a disk graph is an NP-complete problem [31].

The maximum independent set in disk graphs has been proved to be
NP-hard even for unit disk graphs and even if the disk representation is
given as part of the input [10]. A naive independent set algorithm is the
algorithm First-Fit: starting from an empty set, it incrementally constructs
an independent set by examining the nodes of the graph in an arbitrary order
and including a node in the independent set only if none of its neighbors has
been previously included. When applied to unit disk graphs, First-Fit has
approximation ratio at most 5 and does not use the disk representation [46]
(also implicit in [32]). In [46], a 3-approximation algorithm is obtained by
computing a specific ordering of the nodes of a unit disk graph and running
First-Fit according to this ordering. A similar idea leads to a 5-approximation
algorithm in general disk graphs [46]. Furthermore, as it has been observed
in [20], a (2.5 + ǫ)-approximation algorithm for unit disk graphs follows by
a more general result presented in [30]. None of the algorithms above use
the disk representation. Polynomial-time approximation schemes have been
presented for both unit disk graphs [34, 45] and general disk graphs [22, 9]
when the disk representation is given.

The minimum coloring problem has also been proved to be NP-hard in
[10, 27] even for unit disk graphs. Again, First-Fit algorithm can be used.
It examines the nodes of the graph in an arbitrary order and assigns to
each node the smallest color not assigned to its already examined neighbors.
Algorithm First-Fit computes 5-approximate solutions in unit disk graphs

66

[26, 46]. By processing the nodes of the graph in a specific order, First-

Fit computes 3-approximate solutions in unit disk graphs [27, 46, 51]. In
general disk graphs, a smallest-degree-last version of First-Fit achieves an
approximation ratio of 5 [26, 44, 46].

In the on-line versions of the problems, the disk graph is not given in
advance but is revealed in steps. In each step, a node of the graph appears
together with its edges incident to nodes appeared in previous steps (and
possibly, together with the center coordinates and/or the radius of the corre-
sponding disk). When a node appears, an on-line independent set algorithm
decides either to accept the node by including it in the independent set or
to reject it, while an on-line coloring algorithm decides which color to assign
to the node. In each case, the decisions of the algorithm cannot change in
the future. The performance of an on-line algorithm is measured in terms
of its competitive ratio (or competitiveness). For on-line independent set al-
gorithms, the competitive ratio is defined as the maximum over all possible
sequences of disks of the ratio of the size of the maximum independent set
over the size of the independent set computed by the algorithm. For on-line
coloring algorithms, the competitive ratio is defined as the maximum over
all possible sequences of disks of the ratio of the number of colors used by
the algorithm over the minimum number of colors sufficient for coloring the
graph.

First-Fit is essentially an on-line algorithm. For the independent set prob-
lem, it has competitive ratio 5 in unit disk graphs [32, 46] and O(min{n, σ2})
in σ-bounded disk graphs with n nodes [20]. As it is observed in [20], First-Fit

is optimal within the class of deterministic on-line algorithms.
The First-Fit coloring algorithm has been widely studied in a more general

context and has been proved to be Θ(log n)-competitive in inductive graphs
with n nodes [35, 28]. The lower bound holds also for trees (which are
disk graphs) so the Θ(log n) bound holds for general disk graphs. In unit
disk graphs, First-Fit is at most 5-competitive [26, 46] while for σ-bounded
disk graphs with n nodes, it is at most O(min{log n, σ2})-competitive [19].
For unit disk graphs, a lower bound of 2 on the competitiveness of any
deterministic on-line coloring algorithm is presented in [24]. The best known
lower bound on the competitiveness of deterministic coloring algorithms
in σ-bounded disk graphs is Ω(min{log n, log log σ}) [19]. Better on-line
coloring algorithms exist for σ-bounded disk graphs in the case where the
disk representation is given. Most of them use First-Fit as a subroutine. The
best competitiveness upper bound in this case is O(min{log n, log σ}) [19].

In this chapter, we study the on-line version of both problems. For
the independent set problem, we investigate whether randomization helps

67

in improving the competitiveness of on-line algorithms, also addressing the
cellular network model, presented in previous chapters. For randomized
on-line independent set algorithms, the competitive ratio is defined as the
maximum over all possible sequences of disks of the ratio of the size of the
maximum independent set over the expected size of the independent set
computed by the algorithm. We assume that the sequences of disks are se-
lected by oblivious adversaries, i.e., adversaries that have no knowledge of
the random choices of the algorithms (but may know the probability distri-
bution used by the algorithm for making random choices). This is a typical
assumption usually made in the study of randomized on-line algorithms [7].
Somewhat surprisingly, we show that, in general, randomization does not
help against oblivious adversaries even if the disk representation is given,
i.e., we construct sequences of disks for which no (possibly randomized) on-
line algorithm can be better than Ω(n)-competitive. In the case that the
disk representation is not given, we prove a lower bound of Ω(min{n, σ2})
on the competitiveness of on-line algorithms on σ-bounded disk graphs with
n nodes meaning that algorithm First-Fit is optimal within a small constant
factor. For the case of σ-bounded disk graphs with given representation, we
present randomized algorithms with competitive ratio almost logarithmic in
σ and show that they are optimal. For unit disk graphs, we present a ran-
domized algorithm with competitive ratio 4.41. We also show lower bounds
of 2.5 and 3 for randomized algorithms in unit disk graphs. Our results
for the on-line independent set problem together with the previously known
results on deterministic on-line algorithms are summarized in Table 4.1. For
the coloring problem, we show how to achieve the best known upper bound
of O(min{log n, log σ}) for σ-bounded sequences of n disks even if the disk
representation is not given.

Deterministic Randomized algorithms
algorithms

Disk Lower/upper Lower bound Upper bound Alg.
repr. bound

σ-DG Yes Θ(min{n, σ2}) * Ω(min{n, log σ}) * O(min{n, log σ}) Classify

* O
�
min{n, 1

ǫ
log σ log1+ǫ log σ}

�
Guess

σ-DG No Θ(min{n, σ2}) * Ω(min{n, σ2}) O(min{n, σ2}) First-Fit

UDG Yes 5 * 2.5 * 8
√

3
π

≈ 4.41 Filter

UDG No 5 * 3 5 First-Fit

Table 4.1: Summary of results for the on-line independent set problem. (*)
indicates results in this PhD Thesis.

The rest of the chapter is structured as follows. Section 4.2 is devoted to
the on-line independent set problem in σ-bounded disk graphs. Our results

68

for unit disk graphs are presented in Section 4.3 while our coloring algorithm
is presented in Section 4.4.

4.2 Independent sets in σ-bounded disk graphs

4.2.1 Upper Bounds

In this section we present the randomized on-line algorithm Classify for
computing independent sets in disk graphs. It has a competitive ratio
O(min{n, log σ}) against oblivious adversaries on σ-bounded disk graphs
with n nodes. The algorithm uses the value of σ which is supposed to be
known in advance and makes its random choices based on the disk repre-
sentation. Despite these limitations, this is the first algorithm achieving a
competitive ratio logarithmic in σ and (as we will prove in Section 4.2.2) is
optimal among the on-line algorithms that use the disk representation.

Algorithm Classify works as follows. When the first disk is presented, the
algorithm flips a coin. On heads, it accepts the disk and executes algorithm
First-Fit for disks having radii in the interval [R, 2R), where R is the radius of
the first disk presented, ignoring (i.e., rejecting) all other disks. On tails, the
algorithm selects equiprobably a number i from the set {−⌈log σ⌉,−⌈log σ⌉+
1, ...,−1, 1, ..., ⌈log σ⌉} and executes algorithm First-Fit for disks of radius in
the interval [R2i, R2i+1), ignoring (i.e., rejecting) all other disks.

We prove the following theorem.

Theorem 33. Algorithm Classify is O(min{n, log σ})-competitive against
oblivious adversaries on σ-bounded disk graphs with n nodes.

Proof. Since the first disk is accepted with probability 1/2, the algorithm
has competitive ratio O(n). In what follows, we show that the algorithm
is O(log σ)-competitive as well. Denote by OPT the optimal independent
set of the sequence. For i = −⌈log σ⌉,−⌈log σ⌉ − 1, ..., ⌈log σ⌉, denote by Si

the set of disks with radius in the interval [R2i, R2i+1) and by OPTi the
maximum independent set among the disks belonging to set Si. Clearly,
|OPTi| ≥ |OPT ∩ Si| since OPT ∩ Si is an independent set for Si. Assume
that the algorithm selects set Si and executes algorithm First-Fit on the
disks of that set. Observe that disks in Si form a 2-bounded disk graph. In
such graphs, the following lemma gives a guarantee on the performance of
algorithm First-Fit for computing independent sets.

Lemma 34. Algorithm First-Fit is at most 15-competitive on 2-bounded disk
graphs.

69

Proof. Actually, we provide an alternative proof that First-Fit is at most
O(σ2)-competitive on σ-bounded disk graphs which allows to show that the
hidden constant in the O(σ2) notation is small.

Consider the application of algorithm First-Fit on a graph. The number
of optimal nodes that may be blocked by a node accepted by First-Fit is at
most the size of the maximum independent set in its neighborhood. We will
show that no node of a σ-bounded disk graph has an independent set of
size at least (σ + 2)2 in its neighborhood. Therefore, the competitive ratio
of First-Fit on σ-bounded disk graphs is at most the largest integer strictly
smaller than (σ + 2)2. In the case of σ = 2, we obtain that First-Fit is at
most 15-competitive.

Consider a disk D0 centered at point C0 with radius R and assume that
there exists a set S of at least (σ + 2)2 mutually non-overlapping disks
which overlap with D0. Let D1,D2, ...,D|S| be the disks in S. For the disk
Di (1 ≤ i ≤ |S|), denote by Ci its center, by ri its radius and by di the
distance of its center Ci from point C0.

Set rmin = min0≤i≤|S|{ri}. Observe that S contains at most one disk
Dj which may contain point C0 (i.e., dj < rj), otherwise the disks in set S
would not be non-overlapping. If such a disk Dj exists then, certainly, the
intersection of Dj and D0 contains a disk of radius rmin.

Now define R′ = 2rmin + max1≤i≤|S|{di − ri} and let D′ be the disk
centered at C0 with radius R′. For each disk Di not containing C0 (i.e.,
di ≥ ri), consider the disk of radius rmin centered at the point in the
segment C0Ci which is at distance di − ri + rmin from C0. This disk is
completely contained in the intersection of Di and D′.

So, the total area of the intersections of disks in S with D′ is at least

(σ + 2)2πr2
min ≥

(

R

rmin
+ 2

)2

πr2
min

= π(2rmin + R)2

> π

(

2rmin + max
1≤i≤|S|

{di − ri}
)2

= πR′2.

The strict inequality follows by the fact that all disks in S overlap with
D0. We have obtained that the total area of the intersections of disks in S
with disk D′ is larger than the area of D′, which contradicts the assumption
that the disks in S are mutually non-overlapping.

Let B be the number of disks accepted by algorithm Classify and let Bi

70

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

D0

0C

C1

D1

D2

D3

D4

D5

C2

C3

C4

C5

D´

Figure 4.1: The disk D0 and 5 mutually non-overlapping disks which over-
lap with D0. Grey disks indicate that the disk with the smallest radius is
completely contained within disks D1, ...,D5.

be the number of disks accepted by the algorithm if we assume that it selects
the set Si and executes algorithmFirst-Fit only for disks of the selected set.

Using the lemma, we obtain that the algorithm accepts at least

Bi ≥
1

15
|OPTi| ≥

1

15
|OPT ∩ Si|

disks of Si. Now, the expected size of the independent set computed by
algorithm Classify is

E[B] =

⌈log σ⌉
∑

i=−⌈log σ⌉
(Pr[Si is selected] · Bi)

≥ 1

15

⌈log σ⌉
∑

i=−⌈log σ⌉
(Pr[Si is selected] · |OPT ∩ Si|)

≥ 1

15
min

i
{Pr[Si is selected]} · |OPT |

≥ 1

60⌈log σ⌉ · |OPT |.

Hence, the competitive ratio of the algorithm is O(log σ).

71

We now present algorithm Guess which achieves a slightly weaker com-
petitive ratio but does not need to known neither n nor σ in advance. Con-
sider a sequence of n disks and let R be the radius of the first disk of the
sequence. Then, for any i = 0, 1, ..., 2⌈log σ⌉ − 1, define the set of disks Si

with radii at least R/2⌈log σ⌉−i and smaller than R/2⌈log σ⌉−i−1. When the
first disk of each set is presented, the algorithm probabilistically determines
whether it will consider disks from that specific set and ignore all disks from
all other sets.

We define the function α : [1,+∞) → R+ as follows:

α(x) =
1

log e
(⌊log x⌋ + 1)α(⌊log x⌋), if x ≥ 2

α(x) =
2 log e

4 log e − 5
, if 2 > x ≥ 1

When the first disk of the i-th set appears, algorithm Guess tosses a fair
coin with

Pr[heads] =

{

1/2 for i ∈ {1, 2}
1

α(i−2)(i−1) for i ≥ 3

If the outcome is heads, the algorithm decides to execute algorithm First-Fit

for all disks of this set and ignores (i.e., rejects) the disks of all the other
sets; if the outcome is tails, the algorithm rejects all disks of this set.

Theorem 35. Algorithm Guess is at most O
(

min
{

n,
∏log∗ σ−1

j=1 log(j) σ
})

,

against oblivious adversaries in σ-bounded disk graphs with n nodes.

Proof. First, observe that algorithm Guess accepts the first disk of the se-
quence with probability 1/2. So, the competitive ratio of the algorithm is

O(n). In the following, we will show that it is also O
(

∏log∗ σ−1
j=1 log(j) σ

)

.

The proof proceeds in a similar way to the one of Theorem 33. Denote by
OPT the maximum independent set of the sequence and let κ ≤ 1 + ⌈log σ⌉
be the number of all different sets. For all i = 0, 1, ..., κ, denote by S′

i the
i-th set, by OPTi the maximum independent set for the disks of set S′

i,
and by Ei the fact stating that algorithm Guess decides to execute algorithm
First-Fit for the disks of the i-th set. It is: |OPTi| ≥ |OPT ∩S′

i|, since the set
OPT ∩S′

i is an independent set for S′
i. We assume that the algorithm selects

the set S′
i and executes algorithm First-Fit for the disks of this set. Since,

for all i = 1, ..., κ, disks of set S′
i form a 2-bounded disk graph, assuming

that the algorithm selects the set S′
i and executes algorithm First-Fit for the

disks of this set, by Lemma 34, we conclude that the algorithm accepts

Bi ≥
1

15
|OPTi| ≥

1

15
|OPT ∩ S′

i|

72

disks of set S′
i. The expected size of the independent set computed by

algorithm Guess is:

E[B] =
κ
∑

i=1

(Pr[Ei] · Bi)

≥ 1

15

κ
∑

i=1

(Pr[Ei] · |OPT ∩ Si)

≥ 1

15
min

i
{Pr[Ei]} · |OPT |.

So, for showing that the competitive ratio of algorithm Guess is O
(

∏log∗ σ−1
j=1 log(j) σ

)

,

we will show that for all i = 1, ..., κ, it is Pr[Ei] ∈ Ω

(

1Qlog∗ σ−1
j=1 log(j) σ

)

.

For all i = 1, ..., κ, the probability that the event Ei occurs equals the
probability that all disks belonging to the first i − 1 sets (if there exist)
are rejected times the probability that the i-th set is selected. Obviously,
Pr[E1] = 1/2, Pr[E2] = 1/4, Pr[E3] = 4 log e−5

16 log e
, while for i ≥ 4, it is

Pr[Ei] =
1

4

i−3
∏

j=1

(

1 − 1

α(j)(j + 1)

)

1

α(i − 2)(i − 1)
.

For bounding from below this probability, we use the following three
technical claims.

Claim 36. For all β ∈ [1,+∞) and integer i > 1, it is:

i2
∏

j=i1

(

1 − 1

β(j + 1)

)

≥
(

i1
i2 + 1

)
1
β

.

Proof. First, we show that for all j ≥ 1, it is

β

(

1 +
1

j

)

− 1

j
≥ β

(

1 +
1

j

)1− 1
β

(4.1)

Consider the function F : [1,+∞] → R defined as

F (β) = β

(

1 +
1

j

)

− 1

j
− β

(

1 +
1

j

)1− 1
β

.

73

Its first derivative is

F ′(β) =

(

1 +
1

j

)

−
(

1 +
1

j

)1− 1
β

− 1

β
ln

(

1 +
1

j

)(

1 +
1

j

)1− 1
β

=

(

1 +
1

j

)1− 1
β

(

(

1 +
1

j

) 1
β

− 1 − 1

β
ln

(

1 +
1

j

)

)

≥ 0.

The last inequality stems from the inequality x ≥ 1 + ln x, for all x ≥ 1.
Since the function F (·) is non-increasing and F (1) = 0, it is implied that
F (β) ≥ 0, for all β ∈ [1,+∞), and, thus, (4.1) holds.

Using (4.1) we have:

i2
∏

j=i1

(

1 − 1

β(j + 1)

)

=
1

βi2−i1+1

i2
∏

j=i1

βj + β − 1

j + 1

=
1

βi2−i1+1

i2
∏

j=i1

(

β

(

1 +
1

j

)

− 1

j

)

i2
∏

j=i1

j

j + 1

≥ i1
(i2 + 1)βi2−i1+1

i2
∏

j=i1

(

β

(

1 +
1

j

)1− 1
β

)

=
i1

i2 + 1

i2
∏

j=i1

j + 1

j

1− 1
β

=

(

i1
i2 + 1

)
1
β

Claim 37. For all i > 0, it is

i
∏

j=1

(

1 − 1

α(j)(j + 1)

)

≥
(

1 − 1

2α(1)

)log∗ i+1

.

Proof. First, we will show that

i
∏

j=1

(

1 − 1

α(j)(j + 1)

)

≥
(

1 − 1

2α(1)

) ⌊log i⌋
∏

j=1

(

1 − 1

α(j)(j + 1)

)

.(4.2)

74

The lemma will result from applying inequality (4.2) recursively.

Claim 36 and the definition of the function α(·), imply that:

i
∏

j=1

(

1 − 1

α(j)(j + 1)

)

≥
⌊log i⌋
∏

j=0

2j+1−1
∏

j′=2j

(

1 − 1

α(j′)(j′ + 1)

)

=

(

1 − 1

2α(1)

) ⌊log i⌋
∏

j=1

2j+1−1
∏

j′=2j

(

1 − 1

α(j′)(j′ + 1)

)

≥
(

1 − 1

2α(1)

) ⌊log i⌋
∏

j=1

(

1

2

)
1

α(2j)

=

(

1 − 1

2α(1)

) ⌊log i⌋
∏

j=1

(

1

2

)
log e

α(j)(j+1)

=

(

1 − 1

2α(1)

) ⌊log i⌋
∏

j=1

e
− 1

α(j)(j+1)

≥
(

1 − 1

2α(1)

) ⌊log i⌋
∏

j=1

(

1 − 1

α(j)(j + 1)

)

,

where the last inequality stems from the fact that e−x ≥ 1 − x, for all
x ≥ 0.

Claim 38. For all i ≥ 1, it is

α(i) ≤
(

5

4 log e

)log∗ i−2 4

log2 e
α(1)

log∗ i
∏

j=1

log(j) i.

Proof. Obviously, if log∗ i = 0, i,e., i ∈ [1, 2), then it is

α(i) = α(1) ≤ 64

25
α(1) =

(

5

4 log e

)−2 4

log2 e
α(1).

75

If log∗ i = 1, i.e., i ∈ [2, 4), then it is

α(i) =
1

log e
α(⌊log i⌋)(⌊log i⌋ + 1)

≤ 2

log e
α(1) log i

≤ 16

5 log e
α(1) log i

=

(

5

4 log e

)−1 4

log2 e
α(1) log i.

Similarly, if log∗ i = 2, i.e., i ∈ [4, 16), then

α(i) =
1

log e
α(⌊log i⌋)(⌊log i⌋ + 1)

≤ 1

log2 e
α(⌊log ⌊log i⌋⌋)(⌊log i⌋ + 1)(⌊log ⌊log i⌋⌋ + 1)

≤ 4

log2 e
α(1) log i log log i

=

(

5

4 log e

)−1 4

log2 e
α(1) log i log log i.

We assume that log∗ i > 2, i.e., i ≥ 16. Then, it is:

α(i) =
1

log e
α(⌊log i⌋)(⌊log i⌋ + 1)

≤ 5

4 log e
α(log i) log i

≤ ...

≤
(

5

4 log e

)log∗ i−2

α(log(log∗ i−2) i)

log∗ i−2
∏

j=1

log(j) i

≤
(

5

4 log e

)log∗ i−2 4

log2 e
α(1)

log∗ i
∏

j=1

log(j) i.

The inequality in the second row stems form the fact that the function
α(·) is non-increasing and from the observation that for all i′ ≥ 16, it is
⌊log i′⌋ + 1 ≤ 5

4 log i′. The third row results from recursive application of

this inequality, while the last inequality hold since log(log∗ i−2) i ∈ [4, 16).
Thus, the proof of the Claim is completed.

76

Using Claims 37 and 38 and replacing α(1) = 2 log e
4 log e−5 , we have

Pr[Ei] =

1

4

i−3
∏

j=1

(

1 − 1

α(j)(j + 1)

)

1

α(i − 2)(i − 1)
≥

1

4

(

1 − 1

2α(1)

)log∗ (i−3)+1 1

α(i − 2)(i − 1)
≥

1

4

(

5

4 log e

)log∗ (i−3)+1 1

(i − 1)
(

5
4 log e

)log∗ (i−2)−2
4

log2 e
α(1)

∏log∗ (i−2)
j=1 log(j) (i − 2)

≥

125(4 log e − 5)

2048 log2 e(i − 1)
∏log∗ (i−2)

j=1 log(j) (i − 2)

Since the number of all different sets κ is at most 1+ ⌈log σ⌉ < 2+ log σ,
we have

Pr[Ei] ∈ Ω

(

1
∏log∗ σ−1

j=1 log(j) σ

)

thus, completing the proof of the theorem.

4.2.2 Lower bounds

The lower bounds presented in this section show that, in general, ran-
domization does not help, i.e., there are sequences of n disks for which any
on-line algorithm is Ω(n)-competitive even if the disk representation is given.
For σ-bounded disk graphs, the next lower bound states that when the disk
representation is not given, on-line algorithms with competitive ratio loga-
rithmic in σ do not exist.

Theorem 39. Any randomized on-line algorithm for computing independent
sets in σ-bounded disk graphs with n nodes is Ω(min{n, σ2})-competitive
against oblivious adversaries, if the disk representation is not given.

Proof. Let κ be a positive integer. We will construct an adversary which
generates a graph Gκ with an independent set of size κ + 1 such that the
expectation of the size of the independent set of Gκ that any randomized
on-line algorithm can find is at most 2.

The graph Gκ generated by the adversary is defined as follows. The
nodes of Gκ are partitioned into κ levels 0, 1, ..., κ − 1. Each level i has two

77

nodes: a left node vi
l and a right node vi

r. The two nodes of a level are
non-adjacent. First, the adversary generates the two nodes of level 0. For
i = 1, ..., κ − 1, the nodes of level i are generated after the nodes of level
i − 1. The adversary tosses a coin in order to connect the nodes of level i
with nodes of smaller levels. On heads, it connects both nodes of level i to
node vi−1

l and to all nodes of levels i − 2, i − 3, ..., 0 to which node vi−1
l is

connected; on tails, it connects both nodes of level i to node vi−1
r and to all

nodes of levels i − 2, ..., 0 to which node vi−1
r is connected.

vl

vl

vr

vr

vr
κ−1

κ−2vr
κ−2vl

0 0

11

κ−1vl

Figure 4.2: An exmple for graph Gκ.

Consider the set of nodes consisting of the two nodes of level κ− 1 and,
for i = 0, ..., κ − 2, of the node of level i which is not connected to nodes
of higher levels. This is an independent set of Gκ. Hence, the optimal
independent set of Gκ has size at least κ + 1.

In what follows we will show that the size of the independent set of
Gκ any (possibly randomized) on-line algorithm can compute is at most 2.
Consider the application of an algorithm A on t sequences of disks produced
by the adversary. Denote by li the number of executions in which the al-
gorithm accepts the left node of level i, by ri the number of executions in
which the algorithm accepts the right node of level i, and by bi the number
of executions in which the algorithm accepts both nodes of level i.

For i = 0, 1, ..., κ−1, let Xi be the random variable denoting the number
of executions in which the nodes presented at level i are unconstrained by
nodes of smaller levels (i.e., they are not connected to nodes of smaller levels
that have been accepted by the algorithm). Then, nodes of level i + 1 are
constrained only if:

• the left node of level i is rejected and the nodes of level i + 1 are

78

connected to the left node of level i or

• the right node of level i is rejected and the nodes of level i + 1 are
connected to the right node of level i.

Hence,

E[Xi+1|Xi] ≤ Xi −
ri + li

2
− bi

and

E[Xκ−1] ≤ t −
κ−2
∑

i=0

ri + li + 2bi

2
⇒

κ−2
∑

i=0

(ri + li + 2bi) ≤ 2t − 2E[Xκ−1] (4.3)

Since the number of executions in which the algorithm accepts at least one
node from level κ−1 is at most the number of executions in which the nodes
of level κ − 1 are unconstrained, it is rκ−1 + lκ−1 + bκ−1 ≤ E[Xκ−1]. Now,
using (4.3), we obtain that the expectation of the size of the independent
set B(Gκ) computed by the algorithm is

E[|B(Gκ)|] =
1

t

κ−1
∑

i=0

(ri + li + 2bi)

=
1

t

κ−2
∑

i=0

(ri + li + 2bi) +
1

t
(rκ−1 + lκ−1 + 2bκ−1)

≤ 2 − 1

t
(2E[Xκ−1] − (rκ−1 + lκ−1 + 2bκ−1))

≤ 2 − 2

t
(E[Xκ−1] − (rκ−1 + lκ−1 + bκ−1))

≤ 2.

We conclude that the competitive ratio of the algorithm is at least κ+1
2 .

It remains to show that graph Gκ for κ = Ω
(

min{n, σ2}
)

is a σ-bounded
disk graph.

Lemma 40. For any σ ≥ 2 and n ≥ 8, graph G4d2 for

d = min

{⌊

σ + 2

4

⌋

,

⌊
√

n

8

⌋}

is a σ-bounded disk graph with at most n nodes.

79

Proof. Consider σ ≥ 2 and an integer n ≥ 8. We define as

d = min

{⌊

σ + 2

4

⌋

,

⌊
√

n

8

⌋}

.

Obviously, graph G4d2 has 8d2 ≤ n vertices. We will show that the graph
G4d2 is a σ-bounded disk graph.

We construct the following disk representation of G4d2 . The set consists
of 8d2 disks and is partitioned into d disjoint sets called rings. For i = 1, ..., d,
ring i contains 8i − 4 disks called planets and 8i − 4 disks called satellites.
All planets are centered at the same point and all satellites have unit radius.

In each ring i, the j-th planet (for j = 0, ..., 8i− 5) has radius 4(i− 1) +
1 + j

8i−5 . Observe that all planets have radii between 1 and 4d − 2 ≤ σ.
Hence, the disk graph we construct is σ-bounded. We will also show that it
is a disk representation of G4d2 .

For locating the satellites of ring i, pick 8i − 4 lines originating from
the center of the planets which partition the plane into 8i− 4 equal sectors.
The center of the j-th satellite of ring i is located on the bisection of sector
j and distance 4(i − 1) + 2 + 2j+1

16i−10 from the center of the planets. The
construction for d = 3 is depicted in Figure 4.3.

Consider graph G4d2 and let vi
p be the node of level i which is connected

to nodes of higher levels. Denote by vi
s the other node of level i. We

will show that the set of disks we constructed is a disk representation of
G4d2 . In particular, we will map each node of graph G4d2 to a disk and we
will show that, for each pair of nodes connected with an edge in G4d2 , the
corresponding disks overlap and that, for each pair of nodes not connected
with an edge in G4d2 , the corresponding disks do not overlap.

Consider the function ℓ(i, j) which denotes the position of the j-th planet
of ring i in the descending ordering of the planets according to their radius.
Since (i) each ring contains equal same number of planets and satellites, (ii)
the j-th planet of ring i has larger radius than planets 0, ..., j−1 of ring i and
all planets of rings 1, .., i − 1, and (iii) the j-th satellite of ring i has larger
distance from the center of the planets than satellites 0, ..., j−1 of ring i and
all satellites of rings 1, .., i − 1, ℓ(i, j) also denotes the position of the j-th
satellite of ring i in the descending ordering of the satellites according to
their distance from the center of the planets. Clearly, if ℓ(i1, j1) ≥ ℓ(i2, j2),
then it is either i1 ≤ i2 or i1 = i2 and j1 ≤ j2.

We map the j-th planet of ring i to node v
ℓ(i,j)
p of G4d2 and the j-th

satellite of ring i to node v
ℓ(i,j)
s of G4d2 .

Consider a pair of nodes vξ1
p and vξ2

p connected with an edge in G4d2 .

80

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

Figure 4.3: The construction of the sequences of disks generated by the
adversary for the proof of Lemma 6. Grey rings denote the peripheries of
planets of the same rings.

81

The corresponding disks are planets and certainly overlap since they have
common center.

Consider a pair of nodes vξ1
p and vξ2

s connected with an edge in G4d2 .
Then, by the definition of graph G4d2 , it must be ξ1 < ξ2. The corresponding
disks are the j1-th planet of ring i1 and the j2-th satellite of ring i2 such
that ℓ(i1, j1) = ξ1 and ℓ(i2, j2) = ξ2. Since ξ1 < ξ2, it is either i1 > i2 or
i1 = i2 and j1 > j2. In the first case, the sum of the radii of the j1-th planet
of ring i1 and the j2-th satellite of ring i2 is

4(i1 − 1) + 2 +
j1

8i1 − 5
≥ 4i2 + 2

> 4(i2 − 1) + 2 +
2j2 + 1

16i2 − 10

which is the distance of the center of the j2-th satellite of ring i2 from
the center of the planets. In the second case, the sum of the radii of the
j1-th planet and the j2-th satellite of ring i1 is

4(i1 − 1) + 2 +
j1

8i1 − 5
≥ 4(i1 − 1) + 2 +

j2 + 1

8i1 − 5

> 4(i2 − 1) + 2 +
2j2 + 1

16i2 − 10

which is the distance of the center of the j2-th satellite of ring i2 from
the center of the planets. Hence, in both cases, the two disks overlap.

Consider a pair of nodes vξ1
p and vξ2

s not connected with an edge in G4d2 .
By the definition of G4d2 , it must be ξ1 ≥ ξ2. The corresponding disks
are the j1-th planet of ring i1 and the j2-th satellite of ring i2 such that
ℓ(i1, j1) = ξ1 and ℓ(i2, j2) = ξ2. Since ξ1 ≥ ξ2, it is either i1 < i2 or i1 = i2
and j1 ≤ j2. In the first case, the sum of the radii of the j1-th planet of ring
i1 and the j2-th satellite of ring i2 is

4(i1 − 1) + 2 +
j1

8i1 − 5
≤ 4(i2 − 2) + 3

< 4(i2 − 1) + 2 +
2j2 + 1

16i2 − 10

which is the distance of the center of the j2-th satellite of ring i2 from
the center of the planets. In the second case, the sum of the radii of the
j1-th planet and the j2-th satellite of ring i1 is

82

4(i1 − 1) + 2 +
j1

8i1 − 5
≤ 4(i1 − 1) + 2 +

2j1 + 1

16i1 − 10

≤ 4(i2 − 1) + 2 +
2j2 + 1

16i2 − 10

which is the distance of the center of the j2-th satellite of ring i2 from
the center of the planets. Hence, in both cases, the two disks do not overlap.

Finally, consider a pair of nodes vξ1
s and vξ2

s not connected with an edge
in G4d2 . The corresponding disks are satellites; we will show that no two
satellites overlap. Consider first the j1-th satellite of ring i1 and the j2-th
satellite of ring i2 > i1. Then, the difference of the distances of the centers
of the two satelites from the center of the planets is

4(i2 − 1) + 2 +
2j2 + 1

16i2 − 10
− 4(i1 − 1) − 2 − 2j1 + 1

16i1 − 10
>

4(i2 − i1) −
2j1 + 1

16i1 − 10
> 4(i2 − i1) − 2 ≥ 2

meaning that the two satellites (which have unit radii) do not overlap.
In order to show that no two satellites of the same ring overlap, we will
show that no satellite crosses the boundaries of its sector. Consider the
j-th satellite of ring i. The angle defined by the bisection of the sector
i containing the satellite and one of its boundaries is π

8i−4 . Let δ be the
distance of the center of the satellite from the boundary of sector j. Observe
that the distance of the center of the satellite from the center of the planets
is greater than 4i − 2. Hence,

δ > (4i − 2) sin
π

8i − 4

≥ (4i − 2)
2

π

π

8i − 4
= 1,

where the last inequality follows since for any x ∈ [0, π/4], it is sin x ≥
2
π
x.

This completes the proof of the Theorem.

83

The lower bound stated by Theorem 39 obviously does not hold when
the disk representation is given as part of the input. In this case, a simple
deterministic on-line algorithm accepting unit disks (whenever this was pos-
sible) and rejecting all other disks would be optimal for sequences of disks
produced by the adversary of Theorem 39.

The following theorem gives a lower bound on the competitiveness of
on-line independent set algorithms when the disk representation is given as
part of the input and essentially states that algorithm Classify is optimal
within a constant factor.

Theorem 41. Any randomized on-line algorithm for computing independent
sets in σ-bounded disk graphs with n nodes is Ω(min{n, log σ})-competitive
against oblivious adversaries.

Proof. Given σ ≥ 1 and integer n ≥ 2, we will construct an adversary similar
to the one used in the proof of Theorem 39 with the difference that, in each
level, the adversary reveals the representation of the disks to the algorithm.
So, an algorithm applied on a sequence generated by the adversary may use
the disk representation in order to make its random choices.

Let κ = ⌊min{n/2, 1 + log σ}⌋. The adversary generates a sequence D
of disks in κ levels 0, 1, ..., κ − 1, each level having two disks. All disks are
centered at points of a line so we use only one coordinate for locating their
centers. First, the adversary presents two disks of radii σ at level 0 with
centers at points c0

l = −σ and c0
r = σ. For i = 1, ..., κ − 1, the two disks of

level i have radii σ/2i and are presented after the disks of level i−1. Let ci−1
l ,

ci−1
r = ci−1

l + σ/2i−2 be the coordinates of the centers of the disks of level
i− 1. The adversary tosses a coin in order to locate the disks of level i. On
heads, the disks are centered at points ci

l = ci−1
l −σ/2i and ci

r = ci−1
l +σ/2i;

on tails, the disks are centered at points ci
r = ci−1

l + σ/2i−2 − σ/2i and
ci
l = ci−1

l + σ/2i−2 + σ/2i, respectively. The construction is depicted in
Figure 4.4.

Observe that the disks of the same level are non-overlapping and, for i =
0, ..., κ − 2, all disks generated after the disks of level i overlap with exactly
one of the two disks of level i. The intersection graph of D is the graph Gκ

used in the proof of Theorem 39 for κ = ⌊min{n/2, 1 + log σ}⌋. Observe
that, in each level, both disks have identical radii, they overlap with the
same set of disks of smaller levels, and all disks that will appear in the next
levels are selected equiprobably to be overlapping with exactly one of them.
So, no extra information is actually obtained by the disk representation in
each level and the proof completes similarly to the proof of Theorem 39 to
obtain that no algorithm can be better than κ+1

2 -competitive.

84

σ0−σ/2−σ−3σ/2 −σ/4

−3σ/8 −σ/8

Figure 4.4: The construction of the sequence D of disks generated by the
adversary for the proof of Theorem 6.

4.3 Independent sets in unit disk graphs

In this section, we present new upper and lower bounds on the com-
petitiveness of on-line randomized independent set algorithms for unit disk
graphs.

We first present algorithm Filter, an on-line randomized algorithm for
computing independent sets in unit disk graphs. We show that the algorithm

is 8
√

3
π

≈ 4.41-competitive against oblivious adversaries.

At the beginning, algorithm Filter selects α and β uniformly at random
from the intervals [0, 4) and [0, 2

√
3), respectively.

1

When a new disk centered at point (x, y) appears, the algorithm does
the following: If there are integers κ, λ such that the point (x + α, y + β)
has distance less than 1 from the point with coordinates (4κ + 2(λ mod
2), 2λ

√
3), then Filter executes algorithm First-Fit, else it ignores the disk.

When a new disk centered at point (x, y) appears, the algorithm does
the following: If there are integers κ, λ such that the point (x + α, y + β)
has distance less than 1 from the point with coordinates (4κ + 2(λ mod
2), 2λ

√
3), then Filter executes algorithm First-Fit, else it ignores the disk.

1Note that we define algorithm Filter in this way for simplifying its description. To
make the algorithm more practical, we can modify it so that it selects β uniformly at
random in the interval [0, δ) for all real numbers δ > 2

√
3 and uses points with coordinates

(4κ + 2(λ mod 2), λδ) instead of (4κ + 2(λ mod 2), 2λ
√

3). Then, following the same
analysis as the one of Theorem ??, we can show that algorithm Filter achieves a competitive
ratio of 4δ

π
against oblivious adversaries.

85

Theorem 42. Algorithm Filter is 8
√

3
π

-competitive against oblivious adver-
saries.

Proof. Consider the application of algorithm Filter on a sequence D of disks
of unit radius. Let D′ denote the (random) subsequence of D consisting of
the disks not ignored by the algorithm. We denote by A(D) the maximum
independent set of a sequence D and by B(D) the set of disks accepted by
the algorithm.

We first show that the probability that a disk is not ignored by the algo-
rithm is π

8
√

3
. Consider a disk D with center at point (x, y) and the rectangle

defined by the diagonal points (x, y) and (x + 4, y + 2
√

3). Also, consider
the unit disks containing the points at distance less than 1 from points with
coordinates (4κ + 2(λ mod 2), 2λ

√
3) for integer κ and λ, and observe that

the total area of the intersection of these disks with the rectangle equals the
area of a disk with radius 1 (see Figure 4.5. Since point (x + α, y + β) is
uniformly distributed within the rectangle, the probability that the disk D
is not ignored by algorithm Filter is equal to the area of a disk of radius 1
over the area of the rectangle, i.e., π

8
√

3
.

32
(x´,y´)

(x,y) 4

Figure 4.5: Disk centers (x, y) and (x′, y′) and the rectangles where points
(x + α, y + β) and (x′ + α, y′ + β) are uniformly distributed.

Now consider the maximum independent set A(D) and let A′(D) be the
(random) subset of A(D) consisting of the disks of A(D) not ignored by
algorithm Filter. Clearly, A′(D) is an independent set for the set of disks
D′, thus, it is |A(D′)| ≥ |A′(D)|. By linearity of expectation, we obtain that

86

|A′(D)| = π

8
√

3
|A(D)| meaning that

E[|A(D′)|] ≥ π

8
√

3
|A(D)| (4.4)

We now observe that each connected component of the intersection graph
defined by the disks in D′ is a clique. In particular, consider the two points
O1 with coordinates (4κ1 + 2(λ1 mod 2), 2λ1

√
3) and O2 with coordinates

(4κ2 + 2(λ2 mod 2), 2λ2

√
3) such that either κ1 6= κ2 or λ1 6= λ2 and three

disks D1,D2, and D3 centered at points C1, C2, and C3 with coordinates
(x1, y1), (x2, y2), and (x3, y3), respectively. Also, denote by C ′

1, C ′
2, and C ′

3

the points with coordinates (x1+α, y1+β), (x2+α, y2+β), and (x3+α, y3+
β), respectively. Assume that points C1 and C3 have distance smaller than
1 from point O1, and point C2 has distance smaller than 1 from point O2.
We will show that disks D1 and D3 overlap while disks D1 and D2 are non-
overlapping. Clearly, it is |C1C3| = |C ′

1C
′
3| and by triangle inequality, we

obtain that |C1C3| ≤ |C ′
1O1|+ |O1C

′
2| < 2. Hence, disks D1 and D3 overlap.

Now, it can be easily verified that if either κ1 6= κ2 or λ1 6= λ2, it is |O1O2| ≥
4. By the triangle inequality, we have that |O1C

′
1| + |C ′

1C
′
2| + |C ′

2O2| ≥ 4.
Clearly, |C ′

1C
′
2| = |C1C2| and since |O1C

′
1| < 1 and |C ′

2O2| < 1, it is also
|C1C2| > 2 meaning that disks D1 and D2 do not overlap.

Now, since each connected component of the intersection graph of D′ is
a clique, the maximum independent set in the neighborhood of a disk has
size at most 1. So, any disk accepted by algorithm Filter may block at most
one disk in A(D′). Hence, for the subsequence D′ of the disks not ignored by
algorithm Filter, it is B(D′) ≥ |A(D′)| implying that E[B(D′)] ≥ E[|A(D′)|].
Using (4.4), we obtain that the competitive ratio of algorithm Filter is

|A(D)|
E[B(D′)]

≤ 8
√

3

π
.

By adapting the lower bound construction of Section 4.2.2 to the case of
unit disk graphs, we obtain the following statement.

Theorem 43. No on-line (randomized) algorithm for computing indepen-
dent sets in unit disk graphs can be better than 3-competitive against oblivious
adversaries if the disk representation is not given. Even if the disk represen-
tation is given, then no on-line (randomized) algorithm can be better than
2.5-competitive against oblivious adversaries.

87

Proof. The proof of the first part is similar to the proof of Theorem 39. We
construct an adversary which generates the graph G5 and show that G5 is
a unit disk graph. A disk representation of G5 with unit disks is depicted
in Figure 4.6.

Figure 4.6: The construction of the sequences of disks generated by the
adversary for the proof of the first part of Theorem 43.

The proof of the second part is similar to the proof of Theorem 41 and
must guarantee that the unit disks in each level but the last one are po-
sitioned in such a way (i.e., symmetrically) that no algorithm can gain
anything from the representation. We can show that there is a disk rep-
resentation of G4 with these properties. An example is depicted in Figure
4.7.

2

3

1

3

2

1

00

Figure 4.7: An example of the construction of the sequences of disks gener-
ated by the adversary for the proof of the second part of Theorem 43.

88

First, the adversary presents two unit disks at level 0 centered at points
(−2, 0) and (2, 0). Next, it tosses a coin. On:

• heads, it presents two unit disks at level 1 centered at points (−3.3, 0)
and (−0.7, 0). Then, it tosses a coin. On:

– heads, it presents two unit disks at level 2 centered at points
(−3, 1.7) and (−3,−1.7). Then, it tosses a coin. On:

∗ heads, it presents two unit disks at level 3 centered at points
(−3.7, 0.2) and (−2.1, 1.5). Then, it stops.

∗ tails, it presents two unit disks at level 3 centered at points
(−3.7,−0.2) and (−2.1,−1.5). Then, it stops.

– tails, it presents two unit disks at level 2 centered at points
(−1, 1.7) and (−1,−1.7). Then, it tosses a coin. On:

∗ heads, it presents two unit disks at level 3 centered at points
(−0.3, 0.2) and (−1.9, 1.5). Then, it stops.

∗ tails, it presents two unit disks at level 3 centered at points
(−0.3,−0.2) and (−1.9,−1.5). Then, it stops.

• tails, it presents two unit disks at level 1 centered at points (0.7, 0)
and (3.3, 0). Then, it tosses a coin. On:

– heads, it presents two unit disks at level 2 centered at points
(1, 1.7) and (1,−1.7). Then, it tosses a coin. On:

∗ heads, it presents two unit disks at level 3 centered at points
(0.3, 0.2) and (1.9, 1.5). Then, it stops.

∗ tails, it presents two unit disks at level 3 centered at points
(0.3,−0.2) and (1.9,−1.5). Then, it stops.

– tails, it presents two unit disks at level 2 centered at points
(3, 1.7) and (3,−1.7). Then, it tosses a coin. On:

∗ heads, it presents two unit disks at level 3 centered at points
(3.7, 0.2) and (2.1, 1.5). Then, it stops.

∗ tails, it presents two unit disks at level 3 centered at points
(3.7,−0.2) and (2.1,−1.5). Then, it stops.

We can easily see that in every case (depending on the outcome of the coin
tosses) the resulting set of disks is a disk representation for the graph G4.
An example is depicted in Figure 4.7.

89

4.4 An upper bound for on-line coloring

In this section we present an on-line coloring algorithm for disk graphs
which does not require the disk representation. It achieves competitive ratio
O(min{log n, log σ}) for coloring σ-bounded sequences of n disks matching
the best known upper bound for the case where the disk representation is
given. The algorithm is a combination of algorithm First-Fit and algorithm
Layered which is presented in the following.

The algorithm Layered classifies the disks into layers and applies algo-
rithm First-Fit to each layer separately, using a different set of colors in each
layer. Layers are numbered with integers 1, 2, ... and a disk is classified into
the smallest layer possible under the constraint that it cannot be classified
into a layer if it overlaps with at least 16 mutually non-overlapping disks
belonging to this layer.

Lemma 44. For any σ-bounded sequence of disks, the number of layers
constructed by algorithm Layered is at most 1 + log σ.

Proof. Consider the application of the algorithm on a σ-bounded sequence
of disks. Consider a disk Di belonging to layer i > 1 and let R be the radius
of Di. We can show that there is a disk of radius at most R/2 in layer i− 1.
In particular, let S be a set of 16 mutually non-overlapping disks of layer
i − 1 overlapping with Di. Using an argument similar to the one used in
the proof of Lemma 34, we can show that at least one of the disks in S has
radius at most R/2, otherwise, either the disks in S would not be mutually
non-overlapping or at least one of them would not overlap with Di.

We will first show that there is a disk of radius at most R/2 in layer
i − 1. Consider a disk D′

i with the same center as Di and of radius 2R
and let D1

i−1, ...,D
17
i−1 be the 17 mutually non-overlapping disks of layer

i − 1 overlapping with Di. Assume that disks D1
i−1, ...,D

17
i−1 all have radius

at least R/2. Then, the intersection of each of them with D′
i has area at

least πR2/4 while the area of D′
i is 4πR2. Since the 17 disks are non-

overlapping, so are the areas intersecting with D′
i and it should be 17 ×

πR2/4 ≤ 4πR2, a contradiction. Hence, we have proved that at least one of
the disks D1

i−1, ...,D
17
i−1 has radius smaller than R/2.

Let j > 1 be the highest layer containing disks and let Dj be a disk
belonging to layer j. This means that one of the disks of layer j−1 (say Dj−1)
that Dj overlaps with has radius at most R/2. Using the same argument,
we obtain that a disk Dj−2 of layer j − 2 overlapping with Dj−1 has radius
at most R/4, and, eventually, a disk D1 of the first layer has radius r at

90

most R/2j−1. Hence, σ ≥ R/r ≥ 2j−1 which gives that the number of layers
j is j ≤ 1 + log σ.

Theorem 45. The algorithm Layered is O(log σ)-competitive when applied
to σ-bounded sequences of disks.

Proof. Consider the application of algorithm Layered on a σ-bounded se-
quence of disks. Let j be the layer where the maximum number of colors
has been used. Let α be the highest color used in layer j and let Dj be
the disk colored with color α. Then, this disk overlaps with at least α − 1
disks of layer j appeared prior to it. By the definition of the algorithm,
the number of mutually non-overlapping disks of layer j overlapping with
Dj is at most 15. This implies that the optimal algorithm should use at
least α/15 colors for coloring the disks of the sequence while, by Lemma
44, algorithm Layered uses at most α(log σ + 1) colors, hence, it is at most
15(log σ + 1)-competitive.

We now combine algorithms First-Fit and Layered using a technique pro-
posed in [19, 20] to obtain a better result. We use two separate sets of colors
for algorithms First-Fit and Layered. When a new disk Di is presented we
run algorithm First-Fit on Di together with those disks colored by First-Fit.
Similarly, we execute Layered. Then, we compare the results of these two
algorithms and color Di with the algorithm that has used fewer colors up to
that point (including the color used for disk Di). The total number of colors
used is at most the sum of the number of colors used by both methods. Note
that at any time of the execution of the combined algorithm, the number of
colors used by First-Fit and the number of colors used by Layered differ by
at most one. Assume that n < σ. The number of colors used by First-Fit is
at most O(log n) times the optimal number of colors. The number of colors
used by Layered is at most one more than that of First-Fit. So, the total
number of colors is at most O(log n) times the optimal number of colors. A
similar argument holds in the case where n ≥ σ. We obtain the following
theorem.

Theorem 46. There exists an O(min{log n, log σ}-competitive algorithm for
on-line coloring a σ-bounded disk graph with n nodes.

91

92

Chapter 5

Conclusions - Future

Research

In this PhD Thesis, we have presented techniques for the efficient solution
of two fundamental graph-theoretic problems: maximum independent set
and graph coloring with the further objective of their application to the
efficient frequency allocation and call control in wireless networks.

We have studied the on–line version of both problems using competi-
tive analysis. We have considered cellular, planar and arbitrary network
topologies. For the frequency allocation problem in cellular networks, we
improved the best known competitive ratio which had been proved to be at
least 3. Using competitive analysis, we proved that the competitive ratio of
the greedy algorithm is at least 2.429 and at most 2.5.

For the call control problem in cellular networks, we presented algorithm
p-random, a randomized algorithm that uses randomness proportional to
the size of the network in wireless networks of reuse distance 2 and proved
that it achieves a competitive ratio which is better than the correspond-
ing deterministic. In particular, we proved that algorithm p-random obtains
a competitive ratio against oblivious adversaries between 2.469 and 2.651.
Our analysis can extend to arbitrary networks. Furthermore, using Yao’s
Minimax Principle we proved lower bounds of 1.857 and 2.086 on the com-
petitiveness of randomized call control algorithms for wireless networks with
cellular, arbitrary and planar interference graphs, respectively.

We significantly improved these results giving a series of simple ran-
domized algorithms which obtain competitive ratios less than 3, work for
networks that support arbitrarily many frequencies and, use only either a
constant number of random bits or a weak random source. The best upper

93

bound on competitiveness we proved is 7/3.
For cellular networks of reuse distance k > 2, we presented simple ran-

domized on-line call control algorithms with competitive ratios that signif-
icantly improve the lower bounds of deterministic algorithms and use only
O(log k) random bits. Furthermore, we proved new lower bounds of 25/12,
127/60, and 2, 5 on the competitiveness of on-line call control algorithms in
cellular networks of reuse distance k = 2, 3, 4, k = 5 and k ≥ 6, respectively.

We have studied the on-line versions of the two fundamental graph-
theoretic problems, the maximum independent set problem and the graph
coloring problem, for disk graphs, which are graphs resulting from the inter-
section of disks on the plane. In disk graphs, the maximum independent set
and the coloring problems are important since they can be used to model re-
source allocation problems in wireless communication networks [29]. For the
maximum independent set problem, we examined if the use of randomness
can help in the improvement of the competitive ratios of on-line algorithms.
We proved that, in general, the use of randomness does not help against
oblivious adversaries even when the disk representation is given as part of
the input, i.e., we constructed sequences of disks for which no (possibly ran-
domized) on-line algorithm can have a competitive ratio better than Ω(n).
When the disk representation is not given as part of the input, we proved a
lower bound of Ω(min{n, σ2}) on the competitiveness of on-line algorithms
in σ-bounded disk graphs with n vertices which implies that algorithm First-

Fit is optimal within a constant factor. For σ-bounded disk graphs when the
disk representation is given as part of the input, we presented randomized
algorithms with competitive ratios almost logarithmic in σ and proved that
these algorithms can be optimal. For unit disk graphs, we presented a ran-
domized algorithm with competitive ratio equal to 4.41 (which is less than
the lower bound of 5 on the competitiveness of deterministic algorithms).
We also proved lower bounds of 2.5 and 3 on the competitiveness of random-
ized algorithms for unit disk graphs. For the coloring problem, we showed
how the best known upper bound of O(min{log n, log σ}) for σ-bounded se-
quences of n disks can be achieved even if the disk representation is not
given as part of the input.

Our work reveals some interesting open problems for both the frequency
allocation and the call control problems.

For the frequency allocation problem, the most interesting open problem
is whether there exists a 2-competitive deterministic algorithm. Further-
more, the use of randomness could give improved results for the problem.
To the best of our knowledge, randomized frequency allocation algorithms
have not been studied in cellular networks, neither for the static nor for the

94

on-line version. In this case, the only known lower bound is the one of 4/3
(which is only implied by Bartal et al. in [8]).

For the call control problem, the basic open problem is to close the gap
between the upper and lower bound on the competitiveness of the relevant
algorithms. The most interesting version of the problem concerns random-
ized on-line algorithms in wireless cellular networks with small reuse dis-
tance. We also presented algorithms based on the ““classify and randomly
select”” paradigm using new colorings for the interference graph. These al-
gorithms use a small number of random bits, and obtain small competitive
ratios against oblivious adversaries even in the case of networks that support
arbitrarily many frequencies.

Furthermore, our approach naturally leads to the definition of the follow-
ing coloring problem. To our knowledge, this problem has not been studied
before.

Graph Coloring by Separated Cliques

Instance: A graph G = (V,E) and a positive integer K.
Question: Is there an assignment of at most K colors to the
nodes of G such that each connected component of the subgraph
of G induced by the nodes colored with the same color is a clique?

Efficient solutions to this problem (upper bounds on the number of colors
and approximability results for its optimization version), even for special
classes of graphs, may give simple and efficient competitive on-line algo-
rithms based on the “classify and randomly select” paradigm in more general
network topologies than those discussed in this PhD Thesis.

The results for the independent set extend to the more general problem
where we are given w ≥ 1 colors and the objective is to accept the maxi-
mum number of disks which can be properly colored with at most w colors
(clearly, for w = 1, this is the independent set problem). Algorithms Clas-

sify, Guess, and Filter can be easily modified to solve this problem with the
same competitiveness bounds we proved for the independent set problem.
Out techniques can also be used for other classes of intersection graphs, e.g.,
rectangle intersection graphs.

The most interesting open problem related to the independent set prob-
lem is perhaps to close the gap on the competitiveness of (randomized)
on-line algorithms in unit disk graphs. It would be very interesting even to
find an algorithm with competitive ratio smaller than 5 which does not re-
quire the disk representation. For the coloring problem, there is still a large
gap (in terms of σ) between the competitiveness of algorithm Layered (or

95

algorithms with similar competitive ratio that use the disk representation)
and the known lower bounds.

96

Bibliography

[1] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. Competitive
On–line Call Admission in Optical Networks. In Proceedings of the 4th
Annual European Symposium on Algorithms (ESA ’96), LNCS 1136,
Springer, pp. 431–444, 1996.

[2] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. On-line
competitive algorithms for call admission in optical networks. Algorith-
mica, Vol. 31(1), pp. 29-43, 2001.

[3] B. Awerbuch, Y. Bartal, A. Fiat, A. Rosen. Competitive Non–
Preemptive Call Control. In Proccedings of the 5th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA ’94), pp. 312–320, 1994.

[4] P.K. Agarwal, M. Overmars, and M. Sharir. Computing maximally sep-
arated sets in the plane and independent sets in the intersection graph
of unit disks. In Proc. of the 15th Annual ACM/SIAM Symposium on
Discrete Algorithms (SODA ’04), 2004, to appear.

[5] B. Baker. Approximation algorithms for NP−complete problems on
planar graphs. Journal of the ACM, 41(1):153-180, 1994.

[6] H. Breu. Algorithmic aspects of constrained unit disk graphs. PhD Dis-
sertation, University of British Columbia, 1996.

[7] A. Borodin and R. El-Yaniv. Online computation and competitive anal-
ysis. Cambridge University Press, 1998.

[8] Y. Bartal, A. Fiat, and S. Leonardi. Lower Bounds for On–line Graph
Problems with Applications to On–line Circuit and Optical Routing.
In Proc. of the 28th Annual ACM Symposium on Theory of Computing
(STOC ’96), pp. 531–540, 1996.

97

[9] T.M. Chan. Polynomial-time approximation schemes for packing and
piercing fat objects. Journal of Algorithms, 46, pp. 178-189, 2003.

[10] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs.
Discrete Mathematics, 86(1-3):165-177, 1990.

[11] I. Caragiannis, C. Kaklamanis, and E. Papaioannou. On–line Call Con-
trol in Cellular Networks. Foundations of Mobile Computing (satellite
workshop of FST&TCS ’99), 1999.

[12] I. Caragiannis, C. Kaklamanis, and E. Papaioannou. Efficient On–Line
Communication in Cellular Networks. In Proc. of the 12th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ’00), pp.
46–53, 2000.

[13] I. Caragiannis, C. Kaklamanis, and E. Papaioannou. Competitive Anal-
ysis of On–line Randomized Call Control in Cellular Networks. In Proc.
of the 15th International Parallel and Distributed Processing Sympo-
sium (IPDPS ’01), 2001.

[14] I. Caragiannis, C. Kaklamanis, and E. Papaioannou. Randomized Call
Control in Sparse Wireless Cellular Networks. In Proc. of the 8th In-
ternational Conference on Advances in Communications and Control
(COMCON 01), pp. 73-82, 2001.

[15] I. Caragiannis, C. Kaklamanis, and E. Papaioannou. Efficient On–Line
Frequency Allocation and Call Control in Cellular Networks. Theory of
Computing Systems, Vol. 35, pp. 521-543, 2002.

[16] I. Caragiannis, C. Kaklamanis, and E. Papaioannou. Simple on-line al-
gorithms for call control in cellular networks. In Proc. of the 1st Work-
shop on Approximation and On-line Algorithms (WAOA ’03), LNCS
2909, Springer, pp. 67-80, 2003.

[17] I. Caragiannis, A. Fishkin, C. Kaklamanis, E. Papaioannou. On-line al-
gorithms for disk graphs. In Proc. of the 29th International Symposium
on Mathematical Foundations of Computer Science (MFCS ’04), LNCS
3153, Springer, pp. 215-226, 2004.

[18] D. Dimitrijević and J. Vuc̆etić. Design and performance analysis of al-
gorithms for channel allocation in cellular networks. IEEE Trnsactions
on Vehicular Technology, 42(4): 526-534, 1993

98

[19] T. Erlebach and J. Fiala. On-line coloring of geometric intersection
graphs. Computational Geometry: Theory and Applications, 9(1-2), pp.
3-24, 2002.

[20] T. Erlebach and J. Fiala. Independence and coloring problems on in-
tersection graphs of disks. In Approximation and On-line Algorithms,
LNCS. Springer Verlag, 2004. To appear.

[21] T. Erlebach and K. Jansen. The Maximum Edge-Disjoint Paths Prob-
lem in Bidirected Trees. SIAM Journal on Discrete Mathematics, Vol.
14(3), pp. 326-355, 2001.

[22] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation
schemes for geometric graphs. In Proc. of the 12th Annual ACM/SIAM
Symposium on Discrete Algorithms (SODA ’01), pp. 671-679, 2001.

[23] A.V. Fishkin. Disk graphs: a short survey. In Proc. of the 1st Inter-
national Workshop on Approximation and On-line Algorithms (WAOA
’03), LNCS 2909, Springer, pp. 260-264, 2003.

[24] J. Fiala, A.V. Fishkin, and F.V. Fomin. Off-line and on-line distance
constrained labeling of graphs. In Proc. of the 9th Annual European
Symposium on Algorithms (ESA ’01), LNCS 2161, pp. 464-475, 2001.

[25] D. Fotakis, S. Nikoletseas, V. Papadopoulou and P. Spirakis. NP-
completeness Results and Efficient Approximations for Radiocoloring in
Planar Graphs. In Proceedings of the 25th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2000), LNCS
1893, Springer, pp. 363-372, 2000.

[26] A. Gräf. Coloring and recognizing special graph classes. Musikinfor-
matik und Medientechnik Bericht 20/95, Johannes Gutenberg, Univer-
sität Mainz, 1995.

[27] A. Gräf, M. Stumpf, and G. Weissenfels. On coloring unit disk graphs.
Algorithmica, 20(3), pp. 277-293, 1998.

[28] A. Gyárfás and J. Lehel. On-line and first fit colorings of graphs. Journal
of Graph Theory, 12(2), pp. 217-227, 1988.

[29] W.K. Hale. Frequency Assignment: Theory and Applications. In Pro-
ceedings of the IEEE, 68(12), pp. 1497–1514, 1980.

99

[30] M.M. Halldórsson. Approximating discrete collections via local im-
provements. In Proc. of the 6th Annual ACM/SIAM Symposium on
Discrete Algorithms (SODA ’95), pp. 160-169, 1995.

[31] P. Hliněný and J. Kratochv́ıl. Representing graphs by disks and balls.
Discrete Mathematics, 229(1-3), pp. 101-124, 2001.

[32] D. Hochbaum. Efficient bounds for the stable set, vertex cover and set
packing problems. Discrete Applied Mathematics, 6, pp. 243-254, 1983.

[33] D. S. Hochbaum and W. Maass. Approximation schemes for covering
and packing problems in image processing and VLSI. Journal of the
ACM, 32(1):130-136, 1985.

[34] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J.
Rosenkrantz, and R.E. Stearns. NC-approximation schemes for NP- and
PSPACE-hard problems for geometric graphs. Journal of Algorithms,
26(2), pp. 238-274, 1998.

[35] S. Irani. Coloring inductive graphs on-line. Algorithmica, 11, pp. 53-72,
1994.

[36] J. Janssen and K. Kilakos. Optimal multicolouring algorithms with lim-
itied recolouring. Submitted for publication, April 1995.

[37] J. Janssen, K. Kilakos, and O. Marcotte. Ficed preference frequency al-
location for cellular telephone systems. IEEE Trans. Veh. Techn. 48(2):
533-541, 1999.

[38] J. Janssen, D. Krizanc, L. Narayanan, and S. Shende. Distributed On–
Line Frequency Assignment in Cellular Networks. In Proceedings of
15th Annual Symposium on Theoretical Aspects of Computer Science
(STACS ’98), LNCS 1373, Springer, pp. 3–13, 1998.

[39] J. Janssen, D. Krizanc, L. Narayanan, and S. Shende. Distributed
On–Line Frequency Assignment in Cellular Networks. Journal of Al-
gorithms, Vol. 36(2), pp. 119-151, 2000.

[40] T. Kahwa and N. Georganas. A hybrid channel assignment scheme
in large-scale cellular-structured mobile communication systems. IEEE
Transactions on Communications. 4:432-438, 1978.

[41] S. Kim and S. L. Kim. A two-phasealgorithm for frequency assignment
in cellular mobile systems. IEEE Transactions on Vehicular Technology,
1994.

100

[42] S. Leonardi, A. Marchetti–Spaccamela, A. Prescuitti, and A. Rosen.
On–line Randomized Call–Control Revisited. In Proccedings of the 9th
Annual ACM–SIAM Symposium on Discrete Algorithms (SODA ’98),
pp. 323–332, 1998.

[43] L. Lovasz, M. Saks, and W. Trotter. An online graph coloring algorithm
with sub-linear performance ratio. Discrete Math, 75:319-325, 1989.

[44] E. Malesińska. Graph theoretical models for frequency assignment prob-
lems. PhD Thesis, Technical University of Berlin, 1997.

[45] T. Matsui. Approximation algorithms for maximum independent set
problems and fractional coloring problems on unit disk graphs. In Dis-
crete and Computational Geometry, LNCS 1763, Springer, pp. 194-200,
2000.

[46] M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, and D.J.
Rosenkrantz. Simple hueristics for unit disk graphs. Networks, 25, pp.
59-68, 1995.

[47] R. Motwani and B. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[48] C. McDiarmid and B. Reed. Channel Assignment and Weighted Color-
ing. Manuscript, 1997.

[49] L. Narayanan and S. Shende. Static Frequency Assignment in Cellular
Networks. In Proceedings of the 5th International Colloquium on Struc-
tural Information and Communication Complexity (SIROCCO ’97), pp.
215–227, 1997.

[50] L. Narayanan and Y. Tang. Worst-Case Analysis of a Dynamic Channel
Assignment Strategy. Discrete Applied Mathematics 140(1-3): pp. 115-
141, 2004. Preliminary version in Proceedings of the 4th International
Workshop on Discrete Alforithms and Methods for Mobile Computing
and Communications (DIALM 2000), 2000.

[51] R. Peeters. On coloring j-unit sphere graphs. Technical report, Dept.
of Economics, Tilburg University, 1991.

[52] G. Pantziou, G. Pentaris, and P. Spirakis. Competitive Call Control in
Mobile Networks. Theory of Computing Systems, Vol. 35(6), pp. 625-
639, 2002. Preliminary version in Proceedings of International Sym-

101

posium on Algorithms and Computation (ISAAC ’97), LNCS 1350,
Springer, pp. 404–413, 1997.

[53] P. Raymond. Performance analysis of cellular netowrks. IEEE Trans-
action on Communications. 39(12):1787-1793, 1991.

[54] D. Sleator and R.E. Tarjan. Amortized Efficiency of List Update and
Paging Rules. Communications of Association of Computing Machinery
28, pp. 202–208, 1985.

[55] L. Trevisan. Non–Approximability Results for Optimization Problems
on Bounded Degree Instances. In Proc. of the 33rd Annual ACM Sym-
posium on Theory of Computing (STOC ’01), pp. 453–461, 2001.

[56] Y.-T. Tsai, Y.-L. Lin, and F.R. Hsu. The on-line first-fit algorithm for
radio frequency assignment problems. Information Processing Letters,
84, pp. 195-199, 2002.

[57] S. Vishwanathan. Randomized online graph coloring. Journal of Algo-
rithms, 13:657-669, 1992.

[58] D. Wang and Y.-S. Kuo. A study on two geometric location problems.
Information Processing Letters, 28:281-286, 1988.

[59] P.-J. Wan and L. Liu. Maximal Throughput in Wavelength-Routed Op-
tical Networks. Multichannel Optical Networks: Theory and Practice,
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, AMS, Vol. 46, pp. 15-26, 1998.

[60] W. Wang and C. Rushforth. An adaptive local-search algorithms for
the channel-assignment problem. Technical Report, August 1995.

[61] A. C. Yao. Probabilistic Computations: Towards a Unified Measure of
Complexity. In Proceedings of the 17th Annual Symposium on Founda-
tions of Computer Science (FOCS ’77), pp. 222–227, 1977.

102

